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Physics 30A i

INTRODUCTION

Purpose and Outline of the Course

The Physics 30A course has been designed to provide the adult student
with a grounding in the basic concepts of physics. Many adult students who
have been away from the classroom for several years do not have a

sufficient background in physics to enable them to handle Physics 30.

The material in this course consists of ten lessons, designated A - ].

This course deals with basic concepts usually covered in Physics 10 and
Physics 20. It is hoped that these lessons will help students to prepare
themselves adequately for the Physics 30 course. Students will not be
tested on the material covered in Lessons A to ].

Reference Material

All materials in Lessons A to ] are self-contained, so no textbook is

required. However, if you would like to do ‘extra reading, you could
consult one of the following books:

1. Fundamentals of Physics: Heath, Macnaughton and Martindale 9
D.C. Heath Canada Ltd, Toronto

2. Physics: An Experimental Science; White, White and Gould^
D Van Nostrand Company, Inc. Toronto

3 . Physics: A Human Endeavour. Units 1 and 3. Paul, Peirce, and
Stief, Holt, Rinehart and Winston of Canada, Limited. Toronto.

General Instructions

1. As the first ten lessons do not constitute a credit course and as there
will be no test to promote the student into the Physics 30 course, you
will be expected to rely mainly upon your own endeavor and self-

direction to obtain the maximum benefit from the course.

2. Problems constitute the major part of physics. Orderly procedure is

absolutely necessary when solving problems. The following steps are
recommended.

(a) Master the typical illustrative example given in the lesson.

(b) Read the assigned problem through at least twice, noting the
information given and the information which is required.
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(c) The problem should be read carefully and studied so that the

problem situation may be visualized, then clearly expressed, if

possible, in a drawn diagram. All known factors should be
indicated on the diagram and all quantities to be evaluated
(unknowns) should be recognized and indicated as unknowns on or
near the diagram.

(d) Decide upon which relationship between the known and the required
information must be used in order to solve the problem. If this

relationship can be expressed in formula form, write down this

formula.

(e) Change the subject of the formula as required. This means solving
the formula for the quantity sought: by transposition, cross-
multiplication, etc. For example if you want to find the acceleration
of a body from the formula d = iat 2

,
you will solve the formula

for a: iat 2 = d; whence a = x^ry* This is a more efficient

method than trying to solve for the unknown in the original
formula.

3. Substitute the known values from the problem; make sure that all values
are in CONSISTENT units.

You can make your mathematical work easier by cancellation or

by some other short cuts. Like units in the numerator will cancel like

units in the denominator in many problems, leaving your answer with
the correct units.

4. Solve the problem and express the answer in the appropriate units.

5. Ask yourself if the answer is reasonable in view of the information
supplied in the problem, and if it contains the information demanded
by the question.

ANSWERS to Self-Check Exercises are given in each lesson. You will gain
most from the Self-Check Exercises if you do each problem or question
as completely as possible before you refer to the answer.

Note

:

A metric ruler and a

protractor are needed
for this course.
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Outline of the Phyics Upgrading Course (Lessons A-J)

The topics covered in each lesson are given below.

Lesson A

Scientific Notation
The Metric System
Trigonometry
Scientific Models

Lesson B

Equations of Motion s

Motion and Direction ^

Lesson C
D

Vectors
Vector Diagrams

Lesson D

Force
Mass
Inertia

Lesson E

Newton's Second Law
Newton's Third Law
Newton's Law of Gravitation

Lesson F

Momentum
Work
Energy
Power

Lesson G

Kinetic Energy
Potential Energy
Conservation of Mechanical Energy

Lesson H

Kinetic Molecular Theory
Heat and Friction
Heat and Temperature
Conservation of Energy

Lesson I

jo. um.-c/t r
.
Hr Vi

9 . ; v. . d -

-j

Waves as Energy Carriers
Characteristics of Waves

Lesson J

Reflection and Refraction of Waves
Diffraction and Interference of Waves
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We wish you success and enjoyment in this course.
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EQUATIONS

Kinematics

- _ d
^ave ~ d = (^p).

a = + *
t

ve = Vj
2 + 2ad

d = Vjt + ^at 2

2

Dynamics

F = ma ii mg

— .

Ft = mAv ~n
co

II
Gmim 2

R 2

Momentum & Energy

IP
= mV IILU - mv2

2

W = Fd m
T3

II mgh

P =
w
t

Waves & Light

v = fX
sin©!

sin02

ii

<
|< II

Xi _ £|2

X2 n-(
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Dear Student:

You will not be required to send in lessons A-J in Physics Upgrading. Attached you will find a

booklet ofanswers and solutions. Study these lessons very carefully, work on the exercises and then

check your own work by using this booklet.

When you feel you have mastered these lessons you should proceed to doing the Physics 30 lessons.

However if you have difficulty with some concepts you may call us by the government RITE
number in your area, providing you are an Alberta resident

We wish you success in this course.

Vice Principal

Math and Science Department
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The answers below are for LESSON A, page 2.

1. (a) 2

(b) 3

3

3

(c) 4

4

4

2. (a) 2

2

(b) 3

3

(c) 4

4

(d) 5

5

(a) 1.53 x 10
2

(d) 1.0158 x 10
4

(b) 2.86 x 10
2

(e) 2.78643 x 10
5

(c) 8.592 x 10
3

(f) 8.953295 x 10'

LESSON A, page 4

(b) 2

- 2 -2

(c) 2

-2 -2

(d) 3

-3 -3

(e) 4

-4 -4
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LESSON A, page 5

1

2

3

4

5

-1
-2
-3
-4
-5

LESSON A, page 7

1. No, the bases are different.

2. (a) 2
7

(d) 10
4

(b) 3
10

(e) 10
12

(c) 7
13

(f) 10
3/2

(10
,/2 + 1

)

3. (a) 2
3

(d) 10
"6

(b) 3
6

(e) 10
6

(c)
7- 1

(f) 10" 1/2

(10
1/2 ~

For (f), note that 10
V2

is 10 = 3.16, so — is = 0.316; but 10' 1/2

is — = —-

—

10 10 10
Vz

3.16

= 0.316

(a) 1 x 10
-5

(d) 2 x 10’ ;

(b) 1 x 10
8

(e) 5 x 10"

(c) 1 x 2'3
(0 3 x 10~ !

Note that the numerators do not change.

LESSON A, page 8

1 . (a) 2 x 10
7

(b) 14 x 10'° = 1.4 x 10"

(c) 10 x 10
9 = 1.0 x 10

10

(d) 81 x 10
18 = 8.1 x 10

19

Note that the first number is 1 or greater but less than 10.
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LESSON A, page 9

3.

(a) - x 10
2

5
= 0.20 x 10

2 = 2.0 x 10
1 = 20

(b) 3.0 x 10
- 6

(c) 0.40

(d)
2.56 2.56 x 10

17

= 1.6, therefore -z =
1.6 1.6 x 10" 17

1.6 x

108 x 10
4

= 9.00 x 102

12.0 x 10
2

134

For the rules regarding significant digits, see Lesson one, pages 17, 18, and 19 in the regular

Physics 30 course.

LESSON A, page 17

2. - 0.35 x 1000 g
= 3.5 x 10

2
g

3. = 1500 X 10
~ 3 km

= 1.5 km

Note that the ‘m’ cancels out, and that 10
~ 3 km = 1 m. You could also have multiplied by

1 km

1000 m

10
3 km

1500 m x

4. = 100 x 10" 3 L
= 0.10 L

5. = 10
9 x 10~ 6 Mfi

= 10 3MG

100 mL x

10
9G x

1 L

1000 mL

IMG

10
6G

8 .

9 .

(6 and 7 are given)

= 1.0 x 10
6 cm 3

km
= 10 m/s 36— x

h

( 10
2
)

3 = 10
2 x 3

1 h 1000m
x —-

—

3600s km

10
6
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LESSON A, page 21

1. —— = tan 38°
100 m

h = 100 m tan 38°

h = 100 m (0.7813)

h = 78 m (to 2 significant digits)

2. 90° - 75° = 15°

x

50 m
tan 15°

x = 50 m tan 15°

x = 50 m (0.2679)

x = 13 m

LESSON A, page 22

9 m

3.

tan A = = 0.60
15 m

. . A = 31°

(Note that the ‘m’ cancels out, so tan A is a unitless number)

tan B
15 m
9 m

1.67

B = 59°

Alternate method: B = 90° - 31° = 59°

Other methods using sines and the hypotenuse could also be used, but they would

require extra steps.

b = 10.0 cm (0.7431)

b = 7.43 cm

If you wanted to check this, see if tan 42°

Or see if (6.69)
2 + (7.43)

2 = (10.0)
2

6.69

7.43

END OF LESSON A
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LESSON B, page 8

The solutions to the problems in this lesson can often be found in a number of ways
so if you get the correct answer with different formulas, you are probably doing it correctly

Below, we may give alternate solutions or alternate formulas that could be used.

1/ vf = vj + at

= 0 + (5.0 m/s 2
) (3.0 s)

vf = 15 m/s (Note why the units end up as m/s)

d = V;t + V2 at
2

= 0 + V2 (5.0 m/s 2
) (3.0s)

2

= 1/2 (5.0 m/s 2
) (9.0s

2
)

d = 22.5 m (Note that the
k

m’ is an appropriate unit for the distance)

Other formulas that could also be used are vf

2 = Vj
z + 2ad and d =

Vj + vf

_ Vj + Vf 40 m/s + 60 m/s „ ,

2. vav = —— = = 50 m/s (regardless of the time)

Alternate method for number 2:

J
/40 m/s + 60 m/s\ _

d = vnv t = l —
J

5 s = 250 m

.'. vav =
^ m

= 50 m/s (for 5.0s)
5.0s

/40 m/s + 60 m/s\
d = vav t = (

—
) 10 s = 500 m

500 m
vav = — = 50 m/s (for 10.0s)

10.0s
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LESSON B, page 9

45 m
~

15 m/s

t = 3.0s

t

30 m/s - 0
a =

3.0s

a = 10 m/s 2

Other formulas that could be used are:

v
f

2 = + 2ad to get ‘a’;

Vf — V;

then t = — to get ‘t’

a

or d = vjt + V2 at
2
could also be used to get ‘t’

vf — V: 24 m/s - 12 m/s , ,
4. a = — = = 4.0 m/s 2

d =
v

f

p> (

3.0s

'24 m/s + 12m/s\
3.0s = 54 m

‘d’ could also be found by using d = v
;
t + V2 at

2
or v

f

2 = v,
2 + 2ad

LESSON B, page 10

v
f
— Vj (40 — 120) m/s

t =
-10 m/s 2

t = 8.0s (Note that
m
-4; = m/s x s

2/m = s

m/s

.120 m/s + 40m/s\
d = vave t = (

J
8 s = 640 m

For ‘d’ you could also use d = Vjt + V2 at
2
or d

Vf" ~ v
.

2a
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LESSON B, page 11

6 . V: = 80.0 m/s a
g
= 9.8 m/s 2

d = 800 m vf = ?

v
f
2 = v

i

2 + 2a
g
d

= (80 m/s)
2 + 2 x 9.8 m/s 2 x 800 m

= 6400 m 2
/s

2 + 15680 m 2
/s

2

= 22080 m 2
/s

2

v
f
= 22080 m/s

= 148.6 m/s = 1.5 x IQ
2 m/s

LESSON B, page 13

1. (a) 100 km/h south

(b) 0 km/h (Relative to each other, they are at rest.)

(d) 1 km/h north

2. See the boxed part on page 12

3. No, there is no absolute frame of reference.

LESSON B, page 20

1 . This question can have many different answers, depending on the units you use. For length.

you could use ‘m’ or ‘km’. For time, you could use ‘s’, or ‘min’ or ‘h’. Using ‘km’ and ‘h\

d = Vf + Vj X) + 30 km/h\ 1

2 76C

:

)
|— h = 0.25 km
60

v
f
— v

i (30 — 0)km/h
= 1.8 x 10

3 km/h 2
a

t 1/60 h
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Using ‘m’ and ‘s’.

30 km/h = 30 km/h x

d = -
Vf + Vi

1000 m 1 h— x —— = 8.33 m/s
km 3600s

T) + 8.33 m/s
t = 60s = 250 m

vf
- V; 8.33 m/s - 0 m/s „ ,

a = — = = 0.14 m/s 2

You could also get ‘a’ using a

vf
2 = VJ

2 + 2ad

60s

Vf — V
and then you could get ‘d’ using

LESSON B, page 20

„ v f
- V; 60 m/s — 0 m/s

, ^ ,
2. (a) a = * = —— = 4.0 m/s 2

(b)

t 15.0s

v
f
— v

t
60 m/s — 60 m/s

4s
= 0 m/s 2

LESSON B, page 21

(c) The acceleration during the final 12.0 s period,

v -24 m/s - 60 m/s -84 m/s

t 12.0 s

Answer: -7.0 m/s 2

12 s

= -7.0 m/s*

(d) The displacement of the body from its starting point to its position at the end of

the 12.0s period.

Time Interval Average Velocity Displacement

First 15s + 30 m/s 30 m/s x 15s = +450 m

Next 4s +60 m/s 60 m/s x 4.0s = +240 m

Final 12s
[60 + (-24)| m/s

, ,
1 1 = +18 m/s 18 m/s x 12s = +216 m

Total displacement is 906m
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(e) The total distance travelled by the body. Notice that the direction of motion changes

in the last 12s. So the total distance travelled should be found to be larger than

the displacement found in (d).

For the first 19s, the motion is all in the same direction. Thus the distance travelled

is 690 m.

In the final 12s, the direction of motion changes after the body comes to a stop.

.
v (60 - 0)m/s

The time taken to stop is t = = — = 8 . 6s
a 7.0 m/s 2

60 m/s
The body moves d = vavt

= —-— x 8 . 6s = 258 m before stopping.

The time taken to reach -24 m/s is t = —^lm/s
= 3 4S

7.0 m/s 2

24 m/s
So after stopping, the body moves d = vavt

= x 3.4s = 41m

Thus the total distance travelled is 690 m + 258m + 41m + = 989 m

END OF LESSON B

LESSON C, page 1

1. Vector has magnitude and direction. A scalar has only magnitude.

(a) vector

(b) scalar

(c) scalar

(d) vector

(e) scalar

LESSON C, page 2

17 km west

3.9 m south

50 mm east

8.0 m north
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LESSON C, page 7

1. a line 5 cm long, pointing up

2. 60 m west

3. 50 m/s west

LESSON C, page 8

4. If 1 cm = 20 m/s then (Different scales would result in different lengths

of lines)

v

5. (a) 100 m/s 55° E of N (or 35° N of E)

50 m/s 40° E of S

(b) 240 m 80° W of N
140 m 70° W of S
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2. Using 1 cm = 40 km/h

R = 440 km/h 66° E of N

t
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LESSON C, page 13

3. A fisherman is near one end of a lake at point A, and he wishes to get from A
to point B on the other side. See the diagram. What would be his displacement

if he travelled from A to B? Note that the lines drawn in the diagram are not to

any particular scale.

d = 4.6 km at 11.5° E of N

LESSON C, page 16
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LESSON C, page 16

2. (a) 1cm = 1.25 km

R - 7 km 85° W of S

(b) 7 km 85° E of N

END OF LESSON C
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LESSON D, page 1 t

1 . Kinematics is the description of motion. Dynamics explains why motion happened.

2. (a) speed

(b) distance

(c) time

(d) position

LESSON D, page 2

3. (a) See (1), (2), (3) in the middle of page 1.

(b) You must delete it or revise it as needed.

LESSON D, page 5

1. 5 N in Margaret’s favor.

LESSON D, page 6

2. Scale: 1 cm = 10 N

Fr = 3.5 cm
= 3.5 x 10 N = 35 N

FR = 35 N 5° S of W
or 85° W of S
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LESSON D, page 6

3. You start at any one point and draw the three vectors. The tip of the third vector

takes you back to your starting position.

Scale: 1 cm = 3 N

.’. Fr = zero

LESSON D, page 7

4. Scale: 1 cm = 200 N

Draw Fw vertically down 6 cm long. On each

end draw FL and FR at 45° and

measure the length of each.

FL = Fr = 4.25 cm
= 4.25 x 200 N = 850 N = 8.5 x 102 N
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LESSON D, page 8

1 . Inertia is the tendency of a body to remain at rest or to continue moving in a straight

line.

LESSON D, page 9

2. first

second

3. (a) Forces are balanced when the resultant of all forces is zero.

(b) Unbalanced forces occur when the resultant of the forces on a body is not zero.

4. Once in motion, it has a tendency to remain in motion on its own.

LESSON D, page 10

5. Yes, if the car stops suddenly, the seatbelt will prevent you from hitting the steering

wheel or from going through the windshield.

LESSON D, page 11

1. An operational definition describes an activity to explain the meaning of a word.

LESSON D, page 12

2. The greater mass will accelerate the least for a given force and time.

3. Volume is the space occupied by a body. Mass is the measure of inertia of a body.

4. This is very open ended. For example, compare a large cork to a small piece of gold.

5. Give all cartons an equal push. The gold will accelerate the least.

6. Weight is a vector quantity and mass is a scalar quantity. Also, weight varies from

place to place but mass stays the same.

END OF LESSON D
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LESSON E, page 4

1. (a) The acceleration of a body is proportional to force, and in the direction of

the force, but acceleration varies inversely with mass.

(b) a = F/m

2. (a) yes

(b) 6 N

3. F = ma = 1 kg x 15 m/s 2 = 15 N

m _ ,2
a. = —— = 5 m/s

3 kg

a2 = = 3 m/s
5 kg

4.

Zero, since acceleration is zero.

5. m = F/a =

LESSON E, page 5

6. F = m.

= 15 kg x 3.0 m/s 2

= 45 N

Problems

F net = UN - 5N = 6N

m
a

(0 - 15) m/s
= — 30 m/s2

F = ma = 1500 kg x -30 m/s 2 = -4.5 x 10
4N

The negative sign indicates that the force caused a deceleration.
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LESSON E, page 6

3. The engine mass is not needed.

v
f
- v

i _ (2 - 0) m/s
= 0.40 m/s 2

a
t 5.0 s

F = ma = 20 (10 000 kg) x 0.40 m/s 2

4. Using 1 cm = 2 N

at 70° W of N

a = 0.37 m/s 2

= 8.0 x 10
4 N 7N

LESSON E, page 8

1. For every action, there is an equal and opposite reaction.

2. (a) upward force of hand on book

downward weight of book on hand

(c) N pole attracts S pole

S pole attracts N pole

(d) leaf pushes down on molecules

molecules push up on leaf

3. (a) No

(b) Nothing that relies on friction would work.

He could throw something away from himself opposite the direction in which he

wishes to go or he could breathe air in one direction and out in the opposite direction.
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LESSON E, page 10

1. (a) F = ma
F = 1.5 x 10 2 kg x 9.8 m/s 2

F = 1.5 x 103 N

(b) F = ma
F = 16.0 kg x 9.8 m/s 2

F = 1.6 x 102 N

2.
1.87 x 10

3 N

9.8 m/s 2
= 1.9 x 102 kg

LESSON E, page 15

1
.

(a) weight

(b) mass

2. It doubles

3. F a m, m2

LESSON E, page 16

4. F oc ~
d 2

5. the center

6400 km

6. 9600

44N

16 000

6400

—i-rr x 100 N = 16 N
(2.5)

2

(2.5)
2

4

(2.5)
2
x 20 N = 13 N
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LESSON E, page 17

g
8000 km
6400 km

1.25

1

1

(1.25)
2

—l— x 50 N = 32 N
(1.25)

2

= 2.7 x 10
5 N

END OF LESSON E
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LESSON F, pages 8-12

1 . (d)

ma
g
d = Fwd

2. (b)

P = Fv

3. (a)

Only momentum is conserved

4.

No. The law is about mass not volume.

(When the liquids are combined to form a solution the total volume occupied by the liquids is less.)

5.

Your answer depends on your mass, m.

p = mv = m (1.4 m/s S)

If, for example, your mass is 80 kg, then your momentum is 112 kg m/s S.

6.

His velocity will be 8 m/s to the right.

p = mv so

p 800 kg m/s
v = - = = 8 m/s to the right.

m 100 kg

7. The speed of the car will be 1.6 m/s

Pi + P2 = Pi
' + P2

'

(5000 kg) (2.4 m/s) + 0 = (5000 kg + 2500 kg) v

(5000 kg) (2.4 m/s)
, „ #

v = — = 1.6 m/s
7500 kg

8. (a) It’s velocity will be 13.5 m/s

Momentum is conserved: Pi + P2
=

Pi + P2

Let v be the unknown velocity.
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p, = 14.0 kg X 14.0 m/s = 196 kg m/s

p2 = 12.0 kg x 10.0 m/s = 120 kg m/s

Pi + P2
= 316 kg m/s

p,' = 14.0 kg x 11.0 m/s = 154 kg m/s

p2
' = 12.0 kg x v

Pi' 4- p2
' = 154 kg m/s + 12v kg

316 kg m/s = 154 kg m/s + 12v kg

12v = 162 m/s

v = 13.5 m/s

(b) Total KE before collision is 1972 J

Use
kKE = Vkinv

2,
to find the KE for each ball.

Total KE = V2 x 14.0 kg (14.0 m/s)
2 + V2 x 12.0 kg (10.0 m/s)

2

= 1372 J + 600 J = 1972 J

(c) Total KE after collision is 1941 J

Total KE = V2 x 14 kg (11.0 m/s)
2 + V2 x 12 kg (13.5 m/s)

2

= 847 J + 1093.5 J = 1941 J

(d) inelastic

There is a loss in kinetic energy (1941 J < 1972 J)

(e) The energy may have been used to create permanent dents in the balls. There would also

be some conversion of KE to heat due to friction.

9. w = Fd = 15.0 N x 3.8 m = 57 J

10. The mass is 2.4 kg.

W — Fwd = ma
g
d

W
a
g
d

75 J

9.8 m/s x 3.2 m
2.4 kg
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11.

The work done is 1.5 J.

W = Fd = 500 N X 0.003 m = 1.5 J

(We ignored KE)12.

The power is 63 W
_ W _ 5.0 X 10 2

J

t 8.0 s

63 W

13. The power developed is 74 W

_ Fd
= 30 (15 kg x 9.8 m/s 2

) 1.0 m _ ?4 w
t 60 s

14. The power delivered is 2.50 x 10
6 W

P = Fv = 9.00 x 10
4 N x 27.8 m/s = 2.50 x 106 W

15.

The energy consumed is 4.8 x 10
5
J which is equivalent to 133 W-h.

t

W = Pt = 800 W x 600 s = 4.8 x 10
s
J

W = Pt = 800 W x - h = 133 W-h

LESSON G, pages 8-12

1. (a) KE = 2 x 10~ 3
J

KE = y2 (0.001 kg)(2 m/s)
2 = 2 x 10

~ 3
J

(b) KE = 4 x 10“ 3
J

KE = V2 (0.002 kg)(2 m/s)
2 = 4 x 10' 3

J

(c) KE = 8 x 10~ 3
J

KE = y2 (0.001 kg)(4 m/s)
2 = 8 x 10

“ 3
J

2. (a) The kinetic energy of the object is 2000 J.

KE = y2 mv 2 = y2 (10 kg)(20 m/s)
2 = 2000 J
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(b) A force of 6.7 x 102 N acted on the object.

Fd = W = KE

_ KE _ 2000 J

d 3.0 m
= 6.7 x 10

2 N

100 N ,
3. (a) F = ma so a = F/m = = 0.5 m/s“

200 kg

, 2d
d = V2 at (when vj = 0) so t = —

2(36 m)

0.50 m/s 2

= 12 s

vf = Vj + at = 0 + 0.5 m/s 2
(12 s) = 6 m/s

(b) W = Fd = 100 N x 36 m = 3600 J = 3.6 x 10
3

J = KE

KE = Vfemv
2

so v =
m

_ 2(3.6 x 10
3

J)

200 kg

= 6 m/s

4.

Potential energy is energy due to position or condition whereas kinetic energy is energy due

to motion.

5. Here there are many answers possible. Three examples of situations having PE are as follows:

- a stretched elastic

- a boulder on the edge of a cliff

- two magnetic poles separated a small distance apart.

6. (a) The kinetic energy of the sprinter is 4 x 10
3

J

v
f
= v.

100 m
10.0 s

10 m/s

KE = Vfemv
2 = V2 80 kg (10m/s) 2 = 4 x 10

J
J
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(b) He would have to climb 5.1 m.

PE = ma
g
d

PE 4 x 10
3

J
d = — = — z = 5.1 m

, ma
g 80 kg x 9.8 m/s 2

7. Its potential energy is 392 J.

PE = ma
g
d ~ 20 kg x 9.8 m/s 2 x 2.0 m = 392 J

8. At the top of the ramp its potential energy is 200 J. Sliding down it can do 200 J of work.

9. (a) It would take 1.32 x 10
9
J to boost the rocket.

PE = ma
g

h — 275 kg x 6.86 m/s 2 x 7.00 x 10
5 m

- 1.32 x 10
9

J

(b) The power needed would be 122 kW

p =
W

=
1.32x.0’J

= 122x1()5w
t 3 x 3600 s

10. (a) The object must have a speed of 7.9 m/s

Vzmv" KEbottom PEtop —- ma
g
d

Vav 2 - a
g
d

(b)

v - 2 a
g
d = 2 x 9.8 m/s 2 x 3.2 m - 7.9 m/s

It will have the most PE at the top.

(c) It will have the most KE at the bottom, (as soon as it leaves the bar)

(d) Half-way up it will have half KE and half PE.

(e) At this point its KE is 16 J.

PE - ma„d = 1.0 kg(9.8 m/s 2
)(1.6 m) = 15.68 J
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LESSON H, pages 10 - 131.

Heat is a measure of the total kinetic energy of the molecules in a body.

2.

momentum

3.

KE of the body is converted to heat, which is KE on a small scale.

4.

Friction at the pendulum support and air friction cause the pendulum to come to rest.

This lost KE is converted to heat.

5. (a) His average acceleration is 0.35 m/s 2
.

vf - V: 63.0 m/s - 0 „ ,
a = — = = 0.35 m/s 2

t 180 s

(b) air friction reduces the acceleration.

(c) Had he fallen freely his kinetic energy would be 1.2 x 10
8

J.

vf
= Vj + at = 0 + (9.8 m/s 2

)(180 s) = 1764 m/s

KE = V2mv 2 = V2 (80.0 kg)(1764 m/s)
2 = 1.2 x 10 8

J

(d) He actually possesses 1.6 x 10
5

J.

KE = V2mv 2 = V2(80.0 kg)(63 m/s) 2 = 1.6 x 10
5
J

6. The molecules begin to move faster.

7. The molecules begin to move more slowly.

8. Temperature is related to the average KE of the molecules whereas heat is a measure of the

total KE of all the molecules of a body.
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9. The heat required is 7.5 x 10 7
J.

For melting, h = 25 kg X 3.35 x 10
5
J/kg = 0.8375 X 10

7
J

For heating, h = 25 kg x 4190 J/kg°C x 100°C = 1.0475 x 10
7

J

For vaporization, h = 25 kg x 2.261 X 10
6
J/kg = 5.6525 x 10

7
J

Total is 7.5375 x 10
7

J

10. (a) See the list on page 8.

(b) Your answers may vary. The following are sample answers:

- solar cell: Light energy is converted to electrical energy.

- electric motor: Electrical energy is converted to mechanical energy.

- battery: chemical energy is converted to electrical energy.

11. The heat released is 3.5 x 10
3

J.

For copper h = (0.18 kg)(390 J/kg °C)(20°C) = 1404 J

For water h = (0.025 kg)(4190 J/kg °C)(20°C) = 2095 J

Total heat is 3499 J

12.

The thermometer would absorb 1.14 x 10 3
J of energy,

t = 90.0°C - 20.0°C = 70.0°C

For glass h = (0.0240 kg)(670 J/kg°C)(70.0°C) = 1125.6 J

For mercury h = (0.00150 kg)(139 J/kg°C)(70.0°C) = 14.595 J

Total heat = 1140.195 J

END OF LESSON H
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LESSON I, page 17

1

.

A wave is an energy carrying disturbance in a medium which usually has a regular pattern.

2. (a) perpendicular to direction of motion

o» t t t t t t t t twywww ywX
3. (a) Amplitude is the distance from the level surface of the medium to the peak or crest,

(b)

4. (a) Damping is the loss of amplitude or energy as a wave travels out.

(b)
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(c) It goes to heat in the medium. Or it transfers its energy of motion to objects.

5. A longitudinal wave is a wave in which the particles of the medium vibrate parallel

to the direction of wave propogation.

6. A compression is a region of increased medium density.

7. Both carry energy and both go out from a source.

8. (a) true

(b) The wavelength is the distance between successive crests or compressions.

(c) The period is the time required for a complete vibration.

(d) The frequency is the number of vibrations per second.

9. f = i = — = 2.5 Hz
T 0.4s

10. T = - = — = 0.017 s
f 60/s

11. (a) f = - - l
-— = 100 Hz

T 0.010 s

(b) 12 cm

(c) 1.0 cm

(d) 0.010 s

(e) v = fX = 100/s x 12 cm = 1200 cm/s

12. The two points should be half a wavelength or 6 cm apart.

13. v = f\

150= x 2.0 X 10 '- m
s

= 3.0 m/s
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14. X = - = r—— = 1.8 m
f 8.0 x 10

2
/s

v 25 m/s
15. f = = — = 20 Hz

X 1.25 m

16. (a) frequency and period

(b) velocity and wavelength

17.

(b) The above is 6.5 cm

(c) half of a wavelength

19. A wave front is a line joining points in a wave that are in phase and whose motion began at

the same time.

20. A wave ray shows the direction of wave motion.
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21. V =

22. (a)

(b)

(c)

fX = — x 4.5 x 10 2 m = 6.8 x 10
2 m/s

s

Frequency stays the same since it depends on the source.

The wavelength is larger since v = fX, and if ‘v’ goes up, then ‘X’ goes up.

Period is the same since it depends on the source.

END OF LESSON I

LESSON J, page 17
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LESSON J s
page 18 i

2. (a) 90° - 18° = 72°

(b) also 72°

(c)

(
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LESSON J, page 19

1. (a)
i .

v
i

-
. .

= —
i n

30 cm/s

2.5
= 12 cm/s

(b) n 12
- , .’. n2 i

n21 n 12

— = 0.40
2.5

or n21
12 cm/s

30 cm/s
0.40

2. ni 2 -
sin i

sin R

. „ sin i sin 65°
sin R = =

n 12 2.91
= 0.31144

R = 18‘

3. (a) n 12 =
sin R

(c)

sin R =
sin 70° 0.9397

n
, 2 1.33

0.7065

R = 45
‘

_ v, 3.0 x 10
8 m/s

(b) v2 = — =
n 1.33

2.3 x 10
8 m/s
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LESSON J, page 21

It it easily seen from the above graph that the resultant wave is below wave 1 where

wave 2 is below the horizontal axis. Also the resultant wave is above wave 1 where

wave 2 is above the horizontal axis. For any position along the horizontal axis the

following holds: the resultant wave is as far above wave 1 as wave 2 is above the

horizontal axis and the resultant wave is far below wave 1 as wave 2 is below the

horizontal axis.

e.g. At position b on the axis the resultant wave is 3 units above wave 1; the distance

cd is 3 units. Wave 2 is 3 units above the axis; the distance ab is also 3 units.

2. To diffract, light waves need extremely small openings which are rare.

3. (a) The cork is motionless due to destructive interference.

(b) The cork goes up and down with maximum amplitude.

END OF LESSON J

<
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Physics 30A 1 Lesson A

SCIENTIFIC NOTATION

The term "scientific notation" is used to indicate a way of writing
numbers which can simplify and shorten numerical expressions. For example,
a large number such as 1 000 000 000 000 can be written as 1 x 10 12

.

Similarly, a small number such as 0.000 000 000 001 may be written as
1 x 10

” 12
. In both these cases scientific notation was used in order to

write each number more quickly and in a shorter and easier-to-read form.

Scientific notation involves the use of powers of ten to express numbers.
This is shown by a number of examples in the following table.

Table I

Number
Number with power

of ten

1 I x 10° --
10 1 X 10 1 —

100 “1 X io 2

1 000 1 x 10 3

10 000 ”1 X 10 4

1 000 000 “1 x 10 6

2 500 000 “TT5 X 10*

2 503 2.503 x 10 3

0

1

2

3

These numbers
are known as

powers

.

Example 1

(a) If you wished to write 7 234 800 in scientific notation you could do
it in the following steps:

7 234 800 = 7234.8 x 1000 = 7234.8 * 10
3

= 7.2348 x io
3 x 1000 = 7.2348 * 10

3
* 10

3

= 7.2348 x io
6

(b) The decimal point was moved six places to the left, and the

power in the final answer was six

Note that the usual way of writing large numbers in scientific notation
is to have one digit to the left of the decimal point and to multiply the
number by a power of ten in which the power is numerically equal to the
number of places that the decimal point has been moved to the left.
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Do the following exercises.
^

QUESTIONS

1. (a) In 721 if the decimal point is to appear between the 7 and the 2,

it must be moved 2 places to the left, and the power in the

power of ten is 2 Thus,

721 = 7.21 x 10—

.

(b) In 3208 if the decimal point is to appear between the 3 and the

2,

it must be moved places to the left, and the power in

the power of ten is . Thus

3208 = 3.208 x 10—

.

(c) In 15 917 if the decimal point is to appear between the 1 and the

5, it must be moved places to the left, and the power in

the power of ten is . Thus,

15 917 = 1.5917 x 10—
. (

2. In the following parts of this question, indicate how many places to the
left the decimal point must be moved so that it will appear between the
first and second digits in the number, and complete the expression of

the number in scientific notation by completing the power of ten.

(a) 231 Decimal point moved places to the left.

231 = 2.31 x 10

—

(b) 5501 Decimal point moved places to the left.

5501 = 5.501 x 10-

(c) 93 275 Decimal point moved places to the left.

93 275 = 9.3275 x 10

(d) 815 682 Decimal point moved places to the left.

815 682 = 8.156 82 x io

—

3.

Express the following numbers in scientific notation.

(a) 153 =

(b) 286 =

(c) 8592 =

vd) 10 158 =

(e) 278 643 =

(f) 8 953 295 =

<
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Small numbers can be reduced to scientific notation by several steps or

by moving the decimal point several places to the right, and multiplying
by a negative power of ten (such as 10“l

, 10
~2

,
10

”

3

, which are the same

as
lTT

* y^T» an<^ respectively). See the table below.

Table II

Number in
fractional form

1

_1_
10

1

100

1

1000

1

10 000

1

1 000 000

2

1000

756
100 000 000

Number in
decimal form

1

0.1

0.01

0.001

0.0001

0.000 001

2 x 0.001

756 x 0.000 000 01

Number in
scientific notation

1 x 10 °

1 x 10- 1

1 x 10- 2

1 x 10- 3

1 x 10" 4

1 x 10-6

2 x 10-3

756 x 10
q

7.56 x 10

~

6

Please note that the negative power is numerically equal to the number
of places that the decimal point is moved to the right. For example, the
decimal point is moved 4 places to the right, and the power is -4 when
0.0001 is written in scientific notation: 1 x 10“4

.
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0.000 097 231 = 0.000 972 31 *

= 0.000 972 31 * 10”

= 0.972 31

= 0.972 31

= 0.972 31

9.723 1

" 100 000

= 9.723 1

1

10 000

TcT

X 10*4

9.723 1

10 !

x 10'

Instead of using fractions with
powers of ten in the
denominator, you could count
the number of places the
decimal point must be moved to

the right so that it appears
between the first and second
digit (between 9 and 7). This
number is equal to the
negative power that should be
used in the power of ten if the
number is to be expressed in

scientific notation.

From the above, the decimal point moved 5 places to the right and

9.723 1 is multiplied by 10“ 5 which is a negative power of ten.

Do the following exercise.

QUESTIONS

1. (a) In 0.58, if the decimal point is to appear between the 5 and the 8,

it must be moved 1 place to the right. Thus, the negative

power in the power of ten is -1
, and 0.58 = 5.8 * 10"1

.

(b) In 0.013, if the decimal point is to appear between the 1 and the 3,

it must be moved places to the right. Thus, the negative

power of ten is
,
and 0.013 = 1.3 x 10—

.

(c) In 0.025 6, if the decimal point is to appear between the 2 and the

5, it must be moved places to the right. Thus, the negative

power in the power of ten is
,
and 0.025 6 = 2.56 * 10—

.

(d) In 0.008 3, if the decimal point is to appear between the 8 and the

3, it must be moved places to the right. Thus, the negative

power in the power of ten is , and 0.008 3 = 8.3 x 10—

.

(e) In 0.000 51, if the decimal point is to appear between the 5 and the

1, it must be moved places to the right. Thus, the negative

power in the power of ten is
,
and 0.000 51 = 5.1 x 10—

.
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2 . Complete the following table by writing the number of places the

decimal point must be moved to the right if it is to appear between the

first and second digit, and give the correct negative power to complete
the expression of the number in scientific notation. The first one is

done for you.

Number Number of places
decimal point moved

to the right

Number expressed
in scientific notation

0.91 1 9.1 x 10-=*-

0.163 1.63 x 10

—

0.095 9.5 x 10—

0.008 11 8.11 x 10

—

0.000 78 7.8 x 10

—

0.000 056 1OT—

1

Xin

Review of the Rules of Multiplication and Division with Powers

As you should know from your mathematics courses, there are certain
rules which must be followed when multiplying or dividing numbers which
are expressed using powers. These rules are listed below. Please study them
carefully.

1 . Two (or more) powers must have the same base before the powers can be
directly combined (according to Rules 2 and 3 below) in multiplication
or division.

The base of such powers as 10
2

, 10
3

, 10
~"6

, 10
~18

is 10 .

Similarly, the base of such powers as 2
2

, 2
s

, 2
" 10

, 2
” 3

is 2 .

2 . When multiplying two (or more) powers of the same base, the powers are
added.

For example, 10
2

* 10
3

= 10
2* 3

= 10
s

. This can be shown to be true by
the following: 10

2
= 10 * 10

10
3

= 10 x io x io

10
2 x io

3
= (10 x io) x (io x io x io)

= 10 x 10 x io x io x io

= 10 s
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Other examples:

10 3 X 10 9 X 10 2 = io 3+ 9 -'

10 x IO" 6 II 0
11

= 1 o-*
1

10-" x 10 s = io- 4* 8

= 10 4

When dividing two (or

subtracted.
more) powers

Examples

:

10 5

- 10 5-4
To 1*- = 10‘ = 10

8

1Q8-8
TqT - 10 = 10° = 1

10 2
_ -in 2—12

JqTT - 10 = 10-l °^ = 10 5+6 = 10“

2 = 1

0

14

6
) = 10“5 “ 6

of the same base, the powers are

Note that 10 1 = 10, and that

10° = 1. Sometimes when powers

are combined, the resulting power

will be zero. Any base number

raised to a power of 0 equals 1.

Note that when a power is moved from the denominator to the numerator,
or vice versa, in a fraction, the sign of the exponent changes.
For example,

1

TcF
= 1 X io-2

10“ = 1 * 10“ = T
i=r

y|jT = 10 7 « -

ji
yr = 10 7

* 10
— “ = 10“ 2

To further show this, consider again the fraction —yr. We have

10 2 = 100, so that If we complete the division of 100 into 1,

we obtain — = 0.01. Remembering the rule for conversion to scientific

notation, in 0.01 the decimal point must be moved two places to the

right. This gives a power of -2 and 0.01 = 1 x 10“2
. Therefore, we have

1

w* = 1 X io-2
.
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Do the following questions*

QUESTIONS

1. Can the product (or quotient) of the two numbers 2 s and 3
7 be found

simply by directly combining the powers? Explain your answer.

2. Find the products of the following numbers by combining the powers.

(a) 2 s ii04X (d) io- 1 x 10 s =

(b) 3
a x 3

2 = (e) 10 9
x 10 3 =

(c) V X V = (f) 10* x 10 =

3. Find the quotients of the following numbers by combining the powers,

2
s

, ^ 10- 1

27
=(a)

(b)

(c)

(d)

3
8

J7

1
6

l
7

(e)

(f)

l(r

10 9

TO 7

10*

TO"

4. Move the numbers in the denominators of the following fractions to the

numerators, and make the appropriate change in the sign of the powers
so that the numbers will be equal.

(a)

(b)
1

10^ =

(c)
1

27
(f)

3
To

17-

>
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Multiplying and Dividing Numbers in Scientific Notation

Lesson A

You may have to multiply and divide numbers which are in scientific

notation often when you do physics problems. You can do this fairly easily
by using what you know concerning multiplication or division of powers by
direct combination of powers. A method of doing such computations is outlined
on the following page.

Steps to Complete

1. Multiply or divide all the
powers of ten so that a
single power of ten results.

2. Multiply or divide the other
numbers (the factors of the
powers of ten) so that one
number results.

3. If necessary, put the number
resulting from multiplying or
dividing the factors of the
powers of ten in scientific

notation.

4. If necessary, combine the
two powers of ten to obtain
a single number in
scientific notation.

Sample Computation

2.0 x 10 s x

= 2.0 x 6.0
= 2.0 x 6.0

6.0 x 10 2

x 10 s
x 10 2

x 10 7

2.0 x 6.0 x 10 7

= 12 x 10 7

12 x 10 7

= (1.2 x 10 1
) x 10 7

1.2 x 10 1 x 10 7

= 1.2 x 10 8

Do the following questions.

QUESTIONS

1. Find the products of the numbers indicated in the following parts of

this question.

(a) 2 x 10 2 X 1 x 10 s =

(b) 7.0 x 10' X 2.0 X 10 2 =

(c) 2.5 x 10' IIOHXoX

(d) 9.0 x 10' IIOnHXocAX

(

<
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2. Find the quotients of the numbers indicated in the following parts.

(a) 1.0 x 10 s * (5.0 x 10 3
) =

(b) (9.0 x 10 2
) T (3.0 x 10 s

) =

(c) (1.6 x 10 s
) T (4.0 x 10 s

) =

(d) (2.56 x 10 17
) T (1.6 x icr 17

) =

3. Complete the computation indicated below, and give the answer as a
single number in scientific notation.

3.00 x 10 s x 6.00 x 10- 1 x 3.00 x 10“ 2 x 2.00 x 10 2

2.00 ”TPTW7 io'
10
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SI (The Latest Version of the Metric System)

The Change to Metric: Through the centuries, many measurement systems have
developed, evolving from numerous origins, convenient customs, and local
adaptations. Most systems have lacked rational structure. The Imperial system
— using the yard, quart, and pound — is one such conglomeration of poorly
related units.

About 200 years ago, France decided to bring order out of her chaotic
measures and the metric system was born. Although strongly opposed at first,

this new system proved effective and gained popularity, so much so, that over
90% of the world's population now lives in countries that have adopted or

are changing to the metric system.

Various Versions of Metric Systems: There have been several metric systems,
but each new version has added more metric units, causing unnecessary
complexity. To make matters worse, in some applications there has been a

mixture of both Imperial and metric units, and something had to be done to

clean house.

The Latest Version of the Metric System: In I960 the International System of

Units was established as a result of a long series of international discussions.
This modernized metric system, called SI, from the French name, Le Systeme
International d 9 Unites, is now, as a general world trend, to replace all

former systems of measurement, including former versions of the metric
system. Canada has decided to convert to SI.

Many European nations are making the change to SI — a change from
former metric practice. The United Kingdom, Australia, New Zealand, South
Africa, and others are adopting SI, while countries such as India, China,
and Japan are updating their metric practice to conform to SI. In the United
States, major industries are tooling up for metric conversion, and their
choice, too, is SI.

It's SI, not S.I. — omit the periods.

It's just called SI not the "SI system", since the "S" stands for the
word "system".

SI is Similar but Different: SI includes familiar metric units such as the
metre and kilogram. There are, however, a number of changes from former
metric systems. For instance, the centigrade temperature scale is called the
Celsius (pronounced sell-see-us) scale when used for general purposes. This
is a change in name only, so that 20°C, formerly read as "twenty degrees
centigrade", is now read as "twenty degrees Celsius." There is no change in
the scale, only in the name. Water still freezes at 0*C and boils at 100°

C

(degrees Celsius, that is). This kind of change is not difficult for those who
are familiar with older metric systems.

Numbers moulded metrics: The metric system was based on the convenience of
the decimal number system. Units are related by factors such as 10, 100,
and 1000. This makes computation in the metric system much simpler than that
with Imperial measures. A great deal of the arithmetic merely involves the
shifting of the decimal, without tedious calculations.

This course is written using SI units exclusively. The table of units on
the following page is a reference guide so you can easily understand what
these units mean.

PLEASE: Try to think SI Metric and use these metric measures whenever
possible.
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Table of Prefixes

Prefix Symbol Meaning Multi pi ier

tera T one trillion 1 000 000 000 000 = 10 12

giga G one billion 1 000 000 000 = 10 9

*mega M one million 1 000 000 = 10 6

*kilo k one thousand 1 000 = 10 3

hecto h one hundred 100 = 10 2

deca da ten 10 = 10 1

one 1
= 10°

deci d one tenth of a 0.1 = 10- 1

*centi c one hundredth of a 0.01 = 10-2

*mi 1 1

i

m one thousandth of a 0.001 = 1(T 3

mi cro y one millionth of a 0.000 001 = 1(T 6

nano n one billionth of a 0.000 000 001 = icr 9

pi co P one trillionth of a 0.000 000 000 001 = 10- 12

femto f one quadrillions of a 0.000 000 000 000 001 = 1(T 1S

atto a one quintillionth of a 0.000 000 000 000 000 001 = TO' 18

* - most commonly used

Unit Symbol Meaning

terametre Tm 10 12 m
gigametre Gm 10 9 m
megametre Mm 10 6 m
kilometre km 10 3 m
metre m 1 m
mill i metre mm 10" 3 m
micrometre pm 10" 6 m
nanometre nm 10“ 9 m
pi cometre pm 10" 12 m
femtometre fm 10" 15 m
attometre am 10“ 18 m

TABLE OF SI Ur

Distance from sun to Saturn = 1.4 Tm
About 3 times distance from earth to moon.
Distance from Calgary to northern Alberta border.
Length of brisk 10 min walk.
Height of 3-drawer filing cabinet.
Thickness of a dime.

Size of bacteria.
Length of oil molecule.

???

TABLE OF SI UNITS AND NON-SI UNITS PERMITTED FOR USE WITH SI

The units in the table on pages 12, 13, and 14 are put in the order of
most probable frequency of use. So units that would be used frequently are
put firsthand units less frequently toward the last. It is recommended that
the student start thinking entirely metric, and not even think about the
Imperial units at all! The student should use metric measurements in his
daily life exclusively so it becomes a matter of habit.
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RULES FOR WRITING SI

1. The symbols are always printed in Roman (upright) type, irrespective of the

type face used in the rest of the text.

2. Symbols are never pluralized: 45 g (not 45 gs)

3. Never use a period after a symbol, except when the symbol occurs at the end
of a sentence. This is done because SI symbols are SYMBOLS they are NOT
abbreviations

.

Example: the symbol for kilogram is kg NOT kg.

4. Symbols should usually be used and unit names not mixed with symbols.

Example: 10 kg (preferred), ten kilograms (accepted), never 10 kilograms.

5. Always use a full space between the quantity and the symbol:

45 g (not 45g)

Exception: For Celsius temperatures the degree sign occupies the space.

32°C (not 32° C or 32 °C)

6. Use decimals, not fractions: 0.25 g (not 1/4 g) (the decimal is a point
on the line in English)

.

7. A zero is always used before a decimal marker: 0.45 g (not .45 g)

8. Symbols are written in lower case, except when the unit is derived from a
proper name:

m for metre; s for second; but N for newton; A for ampere; degree Celsius
°C is the only one to be upper case in both name and symbol.

9. Prefixes are printed in Roman (upright) type without spacing between the
prefix and the unit symbol: kg for kilogram, km for kilometre

Only one prefix is applied at one time to a given unit: megagram
or tonne,
NOT kilokilogram

10. Use spaces to separate long lines of digits into easily readable blocks of
three digits with respect to the decimal marker: 32 453.246 072 5

Exception: A space is optional with a four-digit number: 1 234 or 1234

11. Multiplication of Units in symbolic form is indicated by a dot at mid-letter
height between the symbols.

12. Division of Units in symbolic form is indicated by an oblique stroke between
the symbols, or by a negative exponent.
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(b) 0.32 kg

(d) 1 x 10 8
u F =

Physics 30A

Example 1 Convert the following quantities as required,

(a) 0.45 m = ? cm

(c) 3 x 10 8 m/s = ? km/s

Solution

:

(a) 0.45 m = ? cm

Since metre is to be converted into cm, you have to know the

relationship between the two i.e. 1 m = 100 cm

0.45
100 cm

= 45 cm
Note that the ratio --ffl --- = 1, andm X

1 m 1 m *

therefore it does not change the value
0.45 m = 45 cm of the quantity. The ratios of units are

selected so that the unwanted units will

(b) 0.32 kg = ?
g be cancelled, and the desired units will

remain.
Because 1 kg = 1000 g

0.32
, 1000 gkg x

1 kg
= 320 §

or 0.32 kg = 320 g = 3.2 X 10 2

g

(c) 3 x 10 8 m/s = ? km/s

Because 1 km = 1000 m,

3 x 10 8 m/s
1 km

= 3 x 10 s km/s
1000 m

or 3 x 10 8 m/s = 3 x 10 s km/s

(d) 1 x 10 8

U F = ? F

Because 1 yiF = 10" 6 F,

1 n—6 F
1 x 10 8 uF x iid JL = l x 10 2 F

1 u F

or 1 x 10 8
P F = 1 x 10 2 F

Example 2: Convert 30 km/h into m/s.

Solution: You have to convert km into m and h into s. You know that

1 km = 1000 m and 1 h = 3600 s

30 km 1000 m 1 h n -—
h
- x -

TSi
- ' x

1600-s = 8 - 3 m/sTherefore
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Convert the following quantities as required. Show the use of the
conversion ratios, as indicated in the first problem.

1. 0.50 m = 0.50 x 10 2 cm Ratio:

= 5.0 x 10 1 cm

2. 0.35 kg = g Ratio:

g

1 x IQ 2 cm
1 m

0.50 m x
1 x 10 2 cm

1 m

3. 1500 m = km Ratio:

km

100 mL = L Ratio:

L

1 000 000 000 a = Ratio:

m

6. 0.000 000 001 F = 10 -o x 10 6 pF Ratio: 1 x 10-’ F x —*

J

.

F
F

= 1 X 10'3

U F

7. 4500 mm = 4500 x 10
-1 cm Ratios: 4500 mm x

1 cm
10 mm

= 450 cm

450 cm x
1 m

= 4.5 m 100 cm

8. 11B0r-H cm 3 Ratios

:

1.0 m 3 x
(

'lOO cm\

V
m

)

9. 36 km/h = m/s Ratios

:
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Trigonometry means triangle measurement. Although you may never have
studied trigonometry, you will find that the principles that will be
introduced are not only simple but very useful. The relations we will

consider will all be confined to right angled triangles, that is, to triangles
in which one angle is 90°. Let ABC be
a right angled triangle and let angle
A be 0 (theta). By definition, the

ratio BC/AB is called the sine of 0,

the ratio AC/AB is called the cosine of 0 -g

and the ratio BC/AC is called the

tangent of 0.

Sin 0 = Tn
BC
AB

n AC
COS 0 = AB

tan 0
BC
AC

If you have difficulty at first remembering what sine, cosine, or
tangent is, you may organize a simple abbreviation for each. From the
definition of sin the important words are sin, opposite, and hypotenuse.
Take the first letter of each word and you have SOH. For cos you will have
CAH and for tangent you will have TOA. In the definition of tan the
important words are tan, opposite, and adjacent so you have the abbreviation
TOA. Placing the three of them together, you have SOH, CAH, TOA. To get
the idea of ratio, study the diagram below.

~ . side opposite the angle
sin of an angle = s—& hypotenuse

e i side adjacent to the angle
cos of an angle = —v ^

—

& hypotenuse

c . side opposite to the angle
tan of an angle = -£-7-3 -r-.

a—s side adjacent

sin 60*
= ^ = 0.866 and sin 30“ = -i = 0.5

cos 60* = i = 0.5 and cos 30° = = —*r— = 0.866

tan 60* = = 1.732 and tan 30*
= ^ = 0.577

A table of trigonometric functions appears on the next page. For practice
vertify some of the values on that table using your calculator.
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Angle Sine Cosine Tangent
(
Angle Sine Cosine Tangent

1* 0.0175 0.9998 o.or7T 46* 0.7193 0.6947 1.0355

2° 0.0349 0.9994 0.0349 47* 0.7314 0.6820 1.0724
3’ 0.0523 0.9986 0.0524 48° 0.7431 0.6691 1.1106

4" 0.0698 0.9976 0.0699 49* 0.7547 0.6561 1.1504
5° 0.0872 0.9962 0.0875 50* 0.7660 0.6428 1.1918

6" 0.1045 6.9945 0.1051 51" 0.7771 0.6293 1.2349

7° 0.1219 0.9925 0.1228 52" 0.7880 0.6157 1.2799

8° 0.1392 0.9903 0.1405 53" 0.7986 0.6018 1.3270
9° 0.1564 0.9877 0.1584 54" 0.8090 0.5878 1.3764

10" 0.1736 0.9848 0.1763 55" 0.8192 0.5736 1.4281

11° 0.1908 0.9816 0.1944 56* 0.8290 0.5592 1.4826

12° 0.2079 0.9781 0.2126 57" 0.8387 0.5446 1.5399

13° 0.2250 0.9744 0.2309 58" 0.8480 0.5299 1.6003

14" 0.2419 0.9703 0.2493 59" 0.8572 0.5150 1.6643

15° 0.2588 0.9659 0.2679 60" 0.8660 0.5000 1.7321

16° 0.2756 0.9613 0.2867 61" 0.8746 0.4848 1.8040

11
° 0.2924 0.9563 0.3057 62" 0.8829 0.4695 1.8807

18" 0.3090 0.9511 0.3249 63" 0.8910 0.4540 1.9626

19" 0.3256 0.9455 0.3443 64* 0.8988 0.4384 2.0503

20° 0.3420 0.9397 0.3640 65* 0.9063 0.4226 2.1445

21' 0.3584 0.9336 0.3839 66" 0.9135 0.4067 2.2460

22° 0.3746 0.9272 0 . 4040 67" 0.9205 0.3907 2.3559

23* 0.3907 0.9205 0.4245 68* 0.9272 0.3746 2.4751

24* 0.4067 0.9135 0.4452 69" 0.9336 0.3584 2.6051

25° 0.4226 0.9063 0.4663 70* 0.9397 0.3420 2.7475

26* 0.4384 0.8988 0.4877 71" 0.9455 0.3256 2.9042

27° 0.4540 0.8910 0.5095 72" 0.9511 0.3090 3.0777

28* 0.4695 0.8829 0.5317 73* 0.9563 0.2924 3.2709
29° 0.4848 0.8746 0.5543 74* 0.9613 0.2756 3.4874

30° 0.5000 0.8660 0.5774 75° 0.9659 0.2588 3.7321

31° 0.5150 0.8572 0.6009 76° 0.9703 0.2419 4.0108

32° 0.5299 0.8480 0.6249 77" 0.9744 0.2250 4.3315
33° 0.5446 0.8387 0.6494 78* 0.9781 0.2079 4.7046

' 34° 0.5592 0.8290 0.6745 79* 0.9816 0.1908 5.1446

35" 0.5736 0.8192 0.7002 80* 0.9848 0.1736 5.6713

36" 0.5878 0.8090 0.7265 81" 0.9877 0.1564 6.3138
37" 0.6018 0.7986 0.7536 82* 0.9903 0.1392 7.1154
38" 0.6157 0.7880 0.7813 83" 0.9925 0.1219 8.1443

39" 0.6293 0.7771 0.8098 84" 0.9945 0.1045 9.5144

40" 0.6428 0.7660 0.8391 85" 0.9962 0.0872 11.4301

41* 0.6561 0.7547 0.8693 86* 0.9976 0.0698 14.3007

42° 0. 6691 0.7431 0.9004 87° 0.9986 0.0523 19.0811

43° 0.6820 0.7314 0.9325 88° 0.9994 0.0349 28.6363
44" 0.6947 0.7193 0.9657 89* 0.9998 0.0175 57.2900
45° 0.7071 0.7071 1.0000 90" 1.0000 0.0000
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In the right angle triangle ABC,
Find sides b and c.

angle A is 25® and side a is 40 m.

Using tan B = —

b = a tan B
= 40 m tan 65°

From page 19 Table of Natural . Trigonometry Functions,

tan 65° = 2.1445
b = 40 m (2.1445) = 85.7800 m

= 86 m

To find the value of c using trigonometry,

sin 25 c a _ 40 m
c c

c =
40 m

25*sin
40 m

0.4226 95 m

Example 4

In the right angle triangle ABC,
and angles A and B.

To find angle A,

Use tan A =
b̂

50 cm
tan A

40 cm 1.25

a is 50 cm and b is 40 cm. Find c

By the Pythagorean theorem

c 2 = a 2 + b 2

= (50) 2 + (40) 2 = 2500 + 1600
= 4100

c = / 4100 = 64 cm

angle A = 51° (refer to tne trigonometry table on page 19)

Also to check, sin A = — = ?? = 0.7813
’ c 64 cm

A = 51°

Then angle B = 180° - (90*

50c~ c = 64 cm, A =

+ 51°) = 39°

51°, B = 39°.
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1. A man standing 100 m from the foot of a flagpole, which is at his eye
level, observes that the angle of elevation of its top is 38°. Find the
height of the pole using trigonometry.

2. From the top of a building 50 m high the angle of depression of the
road intersection is 75° . How far from the building is the intersection?
(Use trigonometry.)
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3. A rectangle is

diagonal makes
5 m long and 9.0 m wide. Find the angles which a

with the sides. (Use trigonometry.

)

f5,

4 . If one angle of a right angle triangle is 42° and the length of the
hypotenuse is 10.0 cm, find the lengths of the other two sides.
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Models in Science

Models are usually scale replicas of actual devices. Scientists and
engineers use models to help them understand phenomena or devise better
devices. James Watt devised a more efficient technique for delivering steam
to a piston when he was repairing a working model of a steam engine
designed by Thomas Newcomen. Model in this situation implies a working
device, smaller than the original, that allows observations and
experimentation with a view to improving the larger device. Unfortunately,
many natural phenomena cannot be examined in this way because we cannot
see them directly e.g. the structure of atom and the propagation of light.

We often use analogies to help us describe and explain reality.

Analogies are not real things, but they help us to understand. Scientists'

models are like analogies. Scientists use analogies in the form of models or
theories to assist them in understanding the world, especially parts of it

that they cannot observe directly.

Theories or theoretical models are used:

- to explain the known qualities or properties of a phenomenon;
- to predict properties and behavior that may not be directly observable;

and
- to help devise new applications for a known scientific phenomenon.

Once a scientist has what he believes to be a good model, he devises
an experiment with which to test it. The experiment may support the theory
or it may suggest modification of the theory or may even prove the theory
to be incorrect.

Thus scientists and technologists have two types of models to help them
understand the world around them. Working models are used if the
phenomenon can be observed and theoretical models are used if the
phenomenon cannot be observed directly.

You should keep in mind that the scientific use of models is to help us
understand the world and that the models must prove themselves able to

stand the test of new evidence that becomes available. If they cannot do
that, they are either discarded or revised. If you have read this section,
then write 'yes' in the space provided.
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Note that the usual way of writing large numbers in scientific notation
is to have one digit to the left of the decimal point and to multiply the
number by a power of ten in which the power is numerically equal to the
number of places that the decimal point has been moved to the left. If the
decimal point is moved to the right, the power of ten is negative. When
multiplying or dividing, powers must have the same base. The powers are
added if you are multiplying and subtracted if you are dividing. SI units
are the only units in use now in this course.

In a right angled triangle ABC,

sin 0

cos 0

tan 0

BC
AB

AC
AB

BC
AC

(
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DESCRIPTION OF MOTION

One Dimensional Motion

Perhaps the simplest motion that we can consider is that of motion along
a line. For example, we could consider motion along a line that extends
from the left to the right across a page, as shown in part (a) of Fig. A.

Or, we would consider motion along a line that extends up and down (from
the top to the bottom of the page) as

Fig,

(a)

(b)

Ft

6

5

4

3

-I

-o

in part (b) of Fig. A. In either

case, we would be dealing with one

dimensional motion because any

motion would be exclusively along a

single straight line (along a single

spatial dimension). In general,

motions are not one dimensional. Most

of the motions that we observe and

are familiar with are three

dimensional: they involve movements

that are up and down, left-right, and

forward-backward. However, in order

for us to learn to deal with the

study of motion in physics, we

should begin with a simpler case.

That is why we shall start by

considering one-dimensional motion.

Position
y
Distance and Speed

The position of a body on a line can be found only in terms of some
reference point on a line. Referring to Fig. B, a body might be said to be

at point A on the line. We could call
Fig. B point A the position of the body. If

the body then moved to position B,

r then one way of specifying part of

ft t » i i i r j

mot ^on would be to give theoi 2. 3 4 5 e> 7 q distance that it moved from A to B.

In Fig. B, the distance between A and
B is 1 cm. Hence, we could say that
in moving from A to B, the body

moved a distance of 1 cm. Similarly, in moving from A to C and from A to D,
the distances travelled would be 4 cm and 8 cm, respectively. What we have
done is to take position A as a reference point, and assign it a value of
0 cm. Then the determination of positions B, C, and D just involved the
measurements of the distances of the points B, C, and D from point A.
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In order to find the average speed of the body in moving from one point
to another on the line we need to know the distance as well as the time
involved in moving that distance. Average speed can be defined as follows:

average speed -
distance

time to travel the distance

Using a formula:

v
av

d= T

where v
av = average speed

d = distance
t = time to travel the distance

Suppose a body moves from point A to point B in 1 s (see Fig. B). The
average speed in travelling from A to B would be found as

v
av

1 cm
1 s

= 1 cm/s

If we also found that the body moved from point A to point C in 2 s,

the average speed in travelling from A to C would be found as

v
av

d
t 4ff

2 = 2 cm/s

Instantaneous Speed

If you have ever watched the speedometer in a car or truck, you know
that the speed of a vehicle can change quickly from one instant to another.
The speed of a body at a particular instant of time is the instantaneous
speed of the body. For a body which has changes in speed, its

instantaneous speed and its average speed are not the same. However, for a
body which has a constant speed (a speed that does not change) when
moving from one point to another, the instantaneous speed and average speed
between those two points are equal.

Referring back to Fig. B, we can assign values for instantaneous
speed at each of the points A, B, and C. This has been shown in Fig. C.
We can also specify the times at which these instantaneous speeds occurred.
If we set the initial time as being
1 s and the time at C is 2 s.

Fig. C

A B C
-I ! 1 1 1

\ Z 3 A 5

at position A, then the time at B is

At A, V
A

= o, ii

<M 0

At B, V
B

= 2 cm/s, 1
B

= 1 s

At c. v
c

= 4 cm/s, ‘
c = 2 s

-4-

0
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The instantaneous speed and average speed are related by the following

initial instantaneous speed + final instantaneous speed
ave

v
i

+ v
f

ave

where Vf = initial instantaneous speed

^ = final instantaneous speed *

To find the average speed between points A and B, we have

av

v. + v c v A + ~ 0 ,

1 f A B 0 + 2 cm/s
2

=
2

=
2

= 1 cm/s

For the average speed between positions A and C:

V. + V- V. + V~ ~ , .

i f A C 0 + 4 cm/s
av " 2 " 2 2

= 2 cm/s

Note that these values are the same as those found earlier.

Rate of Change of Speed

Another important feature of the description of motion of a body is its

rate of change of speed. This can be found by finding the amount that the
speed changes for a unit length of time (often the unit of time is the
second). This can be expressed in formula form as shown below:

rate of change of speed = change in speed
time during which speed changes

where

t

a = rate of change of speed

Vf = final speed

Vf = initial speed

t = time during which the instantaneous speed has changed
from Vf to Vf

Sometimes the rate of change of speed, a, is called acceleration.
However, in a strict sense, acceleration involves more than just a change in

speed, as we will see later.
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Using our earlier example from Fig. B and C, we can calculate the

rate of change of speed as shown below:

From position A to position B:

f i B A 2 cm/s - 0
a =

1
B

- l
A

1 s

2 cm/s
2 cm/s x 1/s = 2 cm/s :

From position A to position C:

a =
v
f

~ V
i

V
C

’ V
A 4 cm/s - 0

2 cm/s
‘c

- lA

= 2 cm/s 2

2 s

There are two features worth pointing out.

1. The rate of change of speed in this example is unchanging. It is

2 cm/s 2 in both cases. This suggests that the value is constant, or

that the rate of change of speed is uniform. In most situations
which we shall study, the rate of change of speed will be assumed
to be uniform.

2. The units of the rate of change of speed can be expressed in terms
units of speed units of distance
units of time ( units of time )

k

These two ways result in the two expressions a =
^ c™/s

anc*

a = 2 cm/s 2 which are equivalent.

Summary of Equations of Motion

We have seen three of the formulas or equations which help us to do
calculations so that we can describe the motion of a body in one dimension.
On page 5, the three equations we have learned about, as well as others,
are given.
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1.

For

2 .

3.

, v. + v cd l f

av t 2

a body moving with uniform

V
f
“ v

i
a = or v

f
= v

i
+

v. + v-
d = -U-Jl t

rate of change of speed (a = constant):

at

4. d = v.t
i

In these equations v is speed, d is distance, t is time, a is rate
of change of speed, v. is the initial speed and is the final speed.

Note: A freely falling body is a body falling under conditions in which air
resistance is zero or is so small that it can be ignored. A freely
falling body has a rate of change of speed of 9.8 m/s 2

. It is denoted
by a . Therefore for a freely falling body, equation 4 becomes

S

d = v.t + *V
Also there is another very important equation, which is not mentioned in

some textbooks:

= v

.

4

i
+ 2 ad

The method of derivation of these equations is not very important for

you. What is important is that you use these equations in problem solving.
The more problems you solve the better you will understand them. Work
through the following examples.

EXAMPLE 1

The initial speed of a body moving with a uniform rate of change
of speed of 5.0 m/s 2 is 10.0 m/s. Find the speed after 15 s.

Given: v^ = 10.0 m/s

a = 5.0 m/s 2

t = 15 s

To find: v^

v
f

= v
i

+ at

= 10.0 m/s + (5.0 m/s 2 x 15 s)

= 10.0 m/s + 75 m/s = 85 m/s

Solution:
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EXAMPLE 2

The initial speed of a body moving with a uniform rate of change of

speed of 3.5 m/s 2
is 12 m/s. Find the distance travelled by the body

in 0.50 min.

Given: v^ = 12 m/s

a = 3.5 m/s 2

t = 0.50 min = 30 s

To find: d

Solution: d = v^ + iat
2

= (12 m/s x 30 s) + [T x 3.5 m/s 2 x (30 s)3

= 360 m +(t x 3.5 m/s 2 x 900 s 2
)

= 360 m + 1575 m

= 1935 m

= 1.9 » 10 3 m

EXAMPLE 3

A train starting from rest at a station uniformly gains speed, until,

after 2 min, it acquires a speed of 100 km/h. What is the distance
travelled by the train during this time interval?

Given: v. = 0
l

v^ = 100 km/h

t = 2 min = 1/30 h

To find: d

d =
v
i

+ v
f

2
t

= <°
.

*
. IPf

km/h
(l/30 h)

= -^2^ km = 1.7 km = 2 km

Solution:
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A stone is

reach the

Given

:

To find:

Solution:

980

4.9

dropped from a height of 980 m. How long does it take to

ground and what is its speed when it reaches the ground?

v. = 0
l

d = 980 m

a =9.8' m/s 2

g

t and Vf

d = v.t + ?a
g

t
2

m =0+ix9.8m/s 2 x t
2

t
2 = 980 s 2

t
2 = 200 s 2

t = \J16o s

= 14 s

+ at

= 0+9.8 m/s 2 x 14 s = 137.2 m/s

= 1.4 x 10 2 m/s
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Do the following problems.

PROBLEMS

1. A toy car accelerates by means of a small rocket-type engine. If the

rate of change of speed during the burn is 5*0 m/s2 and the burn lasts

3.0 s, determine the speed and the distance travelled at the end of the
burn.

2. A car travelling at 40 m/s increases its speed uniformly to 60 m/s.
Determine the average speed if the time required was 5.0 s. What would
be the average speed if the time required was 10 s?

Hint: You do not need to find the acceleration.
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3. A body starting from rest changes its speed uniformly and attains a

speed of 30 m/s after travelling a distance of 45 m. Find the rate

of change of speed of the body and the time required to travel this

distance.

4. A body moving initially with a speed of 12 m/s changes speed uniformly
and attains a speed of 24 m/s in 3.0 s. Find the rate of change
of speed of the body and the distance travelled by it in this time
interval.
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5. The initial speed of a body is 120 m/s and the final speed is 40 m/s.
If the rate of change of speed is

—
10 m/s 2

, find the time required to

attain this speed and find the distance travelled in this time.

(
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6. A balloon is falling at the rate of 80.0 m/s and when it is at a height
of 8.0 x 10 2 m, a stone is dropped from it. With what speed does the

stone hit the ground? (Hint: The stone does not begin to fall from rest.

It will have the same initial speed as the balloon, that is, 80.0 m/s.)
(Hint: use v^.

2 = v ,

2 + 2ad)
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So far in dealing with motion, we have not mentioned a very important
feature: direction. If we include the feature of direction we must add to the

ideas of motion that we studied earlier (distance, speed, rate of change
of speed). As a starting point, study the following statement.

An object is defined as being in motion with
respect to an observer if a line joining the

object to the observer changes in either length or
direction.

To help in understanding how this allows a person to describe motion,
we can think of what happens when two objects are connected together by
something like a line, such as a string. For example, suppose you have a
weight on a string and you hold the weight and string in your hand. We
can think of the string joining the weight (the object) to you (the observer)
as being similar to the line. While you hold the string and weight in your
hand, the string does not change in length or direction, so you can say
that the weight is at rest with respect to you. Next, suppose you drop the
weight, letting the string slip through your fingers until about 50 cm of

string has been released. Then, you tighten your grasp on the string and
the fall of the weight stops. While it was falling, the weight was in motion
downward with respect to you. The increasing length of the string as the
weight falls would be similar to the increasing length of a line between you
and the weight. In addition, the change in length occurs in a downward
direction so that you can describe the motion as being downward.

Now, suppose you hold the length of the string constant at 50 cm, and
you twirl the weight in a circle above your head. With respect to your hand,
the length of the line between your hand and the weight does not change.
However, direction is changing continuously as the weight whirls around.
Thus, even though the length of the line does not change, since its

direction is changing, the weight must be considered to be in motion with
respect to you.

When it is said that an object is in motion with respect to an observer,
the observer is considered to be a reference point which is at rest. This is

done in order to make it easier to describe the motion; it is not a way of

saying that the observer is not moving. It is just a convenient way of

describing motion.

At one time it was believed that it was possible to find a point that
was perfectly at rest (or absolutely at rest). It was believed that there was
something called the aether (pronounced "eether") which was a kind of

"non-material substance" which filled space and which was a fixed frame of

reference throughout space. If a body were absolutely at rest, this meant
that it did not move with respect to the aether. However, eventually
through experiments with light, the existence of the aether was brought into
doubt, and the idea was discarded. This also resulted in elimination of the
idea that a body could be absolutely at rest — since it was necessary to

have a universal frame of reference in order to define the idea of absolute
rest.
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The idea of the aether is useful because it demonstrates a very
important point; motion must be defined with respect to something, such as

the centre of the earth, or the surface of the earth, or the sun. However,
you cannot say that your point of reference is absolutely at rest or fixed.
You can say only that you have made your observations from a particular
point, which you find convenient to use. If you used some other point as
your reference point, then you might be able to observe the motion of your
previous reference point while pretending that your new point is at rest.

Answer the following questions.

QUESTIONS

1. Describe the motion of each of the following objects relative to a car
moving north at 100 km/h with respect to the road.

(a) A hitchhiker standing beside the road.

(b) Another car heading north at 100 km/h.

(c) An airplane overhead flying south at 300 km/h.

kQO km/h Aoijuth (zietatLve to the. cjoa.

)

(d) A car heading north at 101 km/h.

2, How is motion with respect to an observer defined?

3 . Is it possible to define the idea of absolute rest physically? Why or
why not?
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In order to see how the concept of direction can be added to our
previous ideas of motion we will consider the case of one dimensional

motion again. See Fig. D. The straight
Fig. D line in Fig. D is divided into 1 cm

segments. Near the centre of the line

a point has been labelled 0. On the

4 _2_ -{ o +i + 2. +3 *4 right side of the 0 point, there are
1 r « T T T ' points labelled +1, +2, +3, and +4 at

1 cm intervals. On the left side of the

0 point there are points labelled -1,

-2, -3, and -4 at 1 cm intervals.
What we are doing here is defining a direction convention: points to the

right of the 0 point have positive signs, and points to the left of the 0

point have negative signs.

You may have realized that the point "labels" in Fig. D are actually
the distances of the points from point 0. By giving positive and negative
signs to those distances we have indicated the directions (left or right) of

the points along the line from point 0. This gives us a way of specifying
motion using both distance and direction.

Fig. E

c
+

-H -J -2.

1

In Fig. E, the positions of a body along a straight line are indicated
by the letters A, B, C, and D. We can

specify the positions of the body
with respect to position A by
giving their displacements. A
displacement may be defined as
the change in position of a body.

7 Displacement includes the ideas of
* the size of the change of position

and the direction of the change of

position. The size of the change
of position can be expressed in

terms of the length of the line between two points. The direction of the
change of position can be expressed in terms of a positive or negative
sign, to show that the change of position is to the right or left respectively
of the reference point. For example, referring to Fig. E, we can give the
displacements of a body at points B, C, and D with respect to point A as
follows:

Displacement at B with respect to A

Displacement at C with respect to A

Displacement at D with respect to A

Notice that we have given the symbols representing the displacements
as well as the values. The d's with bars over them (sometimes small arrows
are used instead of bars) represent the displacements. The bars over the
d's provide a way for us to distinguish between distances and displacements
when we use symbols.

= +3 cm = dgA
= -2 cm = dl

CA
= -4 cm = d

DA
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In finding the displacements with respect to point A, we found the

distances between each point and point A in centimetres, and we gave a
+ or - sign to show that the point was to the right or left, respectively, of

point A.

If the reference point is changed, then we use the same procedure.
Suppose that we take point B as the reference point. Displacements at

positions A, C, and D with respect to point B are given below:

3 cm

5 cm

7 cm

Since points A, C, and D are all to the left of point B, the signs of

the displacements are all negative. We can consider the other extreme by
finding the displacements of points A, C, and B with respect to point D.

+4 cm

+7 cm

+2 cm

Since points A, B, and C are all to the right of point D, the signs of

the displacements are all positive.

Distance and Displacement

It is important to distinguish between distance and displacement. As you
have probably realized, the distance travelled by a body is not the same as
displacement. One difference is that displacement includes direction and
distance does not. Another difference can be understood if we look at the
definitions. The distance travelled by a body between two points may be
defined as the length of the path travelled by the body in going from one
point to another. If a body travels from point A to point D, going through

B and C, then the distance
Fig. F travelled by the body is the

sum of the distance from A to B,

the distance from B to C, and
the distance from C to D.

0 ^ A 8 Referring to Fig. F, distance

0 ~i 2 3 4 AB = 3 cm, distance BC = 5 cm,
distance CD = 2 cm, and the

distance travelled by a body in

going from A to D through B
and C is 3 cm + 5 cm + 2 cm = 10 cm. Hence, the distance travelled by the
body depends upon the path that the body takes. The displacement at D
with respect to A is given by d^ = -4 cm. Displacement is not necessarily

dependent on the path taken by the body.

-l
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When we include direction, we no longer deal with just speed or the

rate of change of speed. Instead we must use the ideas of velocity and
acceleration. Velocity may be defined as the rate of change of displacement.
For average velocity we have

where v
av ~ average velocity

d = the displacement
t - the time during which the displacement occurs.

Instantaneous velocity is the velocity of a body at some instant of time.

Remember that velocity includes direction. The direction convention that
we shall use is the same as that introduced earlier: velocity to the right is

positive; velocity to the left is negative.

Some of the situations with which we shall be concerned will involve
vertical motion rather than left-right motion. In those cases, we shall adopt
the following convention: upward displacements and velocities are positive;
downward displacements and velocities are negative.

Acceleration may be defined as the rate of change of velocity. Because
it includes direction, acceleration is not the same as the rate of change
of speed. Again, the same direction conventions will be used for acceleration
as for velocity and displacement:

1. Left-right motion - acceleration to the right is positive;
acceleration to the left is negative.

2. Vertical motion - acceleration upward is positive; acceleration
downward is negative. Note that the acceleration of gravity, a ,

acts downward. Hence, "a = -9«8 m/s 2
0 ®

g

In formula form, acceleration may be expressed as

where a = acceleration
v
f

= final velocity

v = initial velocity

t = time during which the velocity changed from ~v\ to "v^.
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We can rewrite the equations given earlier to include the quantities

that involve direction.

1. v
d

v
f
+ v

i

av

v
f
- v.

2. a = 6r Vf - v\ + at

v\ + v_

3. d= -4_it

4.

d = v. t + yat 2

5.

v* = v.
2

+ 2 a d

In the above equations, a is assumed to be uniform.

Study the following examples.

EXAMPLE 5

What is the final velocity of a body starting from rest and accelerating
uniformly to the left at 15 m/s 2 for 5.0 s? What is the final speed?

Givens v\ = 0
i

a = -15 m/s 2

t = 5.0 s

To find: v^

Solution: v^. = v\ + at

v~
f

= 0 + (-15 m/s 2
) (5.0 s)

= “75 m/s

Speed = = 75 m/s

The final velocity is 75 m/s to the left. Final speed is 75 m/s.
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EXAMPLE 6

What was
right at 8.00

the initial velocity of a body that was accelerated to the
m/s 2

for 3.50 s to a final velocity of 32.0 m/s to the right?

Given: 'a = +8.00 m/s 2

t = 3.50 s

v^ = +32.0 m/s

To find: "v.
l

Solution: vr = v. + at
f i

V. = v
f

- at

= 32.0 m/s - (8.00 m/s 2
) (3.50 s)

= 32.0 m/s - 28.0 m/s

= +4.0 m/s

The initial velocity was 4.0 m/s to the right.

EXAMPLE 7

For the body described in EXAMPLE 6, what would have been the
displacement of the body after the 3.50 s of acceleration at 8.00 m/s 2

?

Given: = +4.0 m/s

t = 3.50 s

a = +8.00 m/s 2

To find: d*

Solution: d = v.t + |at
2

d = (+4.0 m/s) (3-50 s) + K+8.00 m/s 2
)(3.50 s)

2

= +14 m + 49 m

= 63 m

The displacement would have been 63 m to the right.
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A stone is thrown vertically upward with an initial speed of 30 m/s. How
high will it go? What is its displacement at the top of its flight?

Given: = 30 m/s

a = -9-8 m/s 2

§
= 0 /The stone will keep going up until its speed is

zero.)

To find: d

Solution: Often you can save some calculations by selecting the more
suitable formula. You can see the two solutions here. The
alternate solution saves some steps though both solutions
are equally correct.

v
f

t

v. + a t

J- _S
Vf - V.

0 - (+30 m/s)
"

-9':g"Tri7i"'
i

= 3 • 06 s — 3 • 1 s

d = v.t + |at 2

= (30 m/s x 3.06 s) + i(-9.8 m/s 2
) (3.06 s) 2

= +91.8 m - 45.88 m

= 45.9 m = 46 m

The height will be 46 m. The displacement at the top will be +46 m.

Alternate Solution

v, 2 = v. 2 + 2a d
f i g

_ 0 - (30 m/s) 2

2(-9.8 m/s 2T

_ 900
" 19Ja

m

= 45 . 9 m = 46 m
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Do the following problems.

PROBLEMS

1. A car starts up from rest, accelerates uniformly for 1.0 min and acquires

a velocity of 30 km/h to the right. What will be the displacement of the

car in this time interval? What is the car’s acceleration during this

period?

2. A body accelerates from rest for 15.0 s to a velocity of 60 m/s to the

right. It remains at that velocity for 4.0 s, and then accelerates for

12.0 s to a velocity of 24 m/s to the left. Find the following things.

(a) The acceleration during the first 15.0 s period.

(

(b) The acceleration during the next 4.0 s period.
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(c) The acceleration during the final 12.0 s period.

(d) The displacement of the body from its starting point to its

position at the end of the 12.0 s period.

(e) The total distance travelled by the body. Notice that the
direction of motion changes in the last 12 s. So the total

distance travelled should be found to be larger than the
displacement found in ( d) . The motion can be represented
by the following diagram:
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Lesson Summary

This lesson covered the following major topics.

1. Motion along a straight line, or one-dimensional motion, can be defined
partially in terms of the ideas of position, distance, speed and
rate of change of speed.

2. Certain equations of motion involving distance, speed, and rate
of change of speed can be used to do calculations that provide a way
of partially describing motion.

3. Description of motion - a body may be described as being in motion with
respect to an observer if a line joining the object to the observer
changes in either length or direction.

Motion must be considered as being definable only with respect to some
specified point.

4. By using plus and minus signs for direction according to an accepted
convention, the quantities displacement, velocity, and acceleration can
be used in the equations of motion.

5. The use of the following equations of motion was outlined.

v
-7 V. + V-
d l f

av “
t 2

v
f

= v. + at

d

d = v
i
t + |a t

2

v
f

2 = v^ 2 + 2ad

End of Lesson B
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SCALAR AND VECTOR QUANTITIES

In the previous lesson when we dealt with quantities that involved
direction, we were dealing with vector quantities. Vector quantities are
those which have magnitude and direction. Quantities which have magnitude
but not direction are scalar quantities. Examples of vector quantities are
displacement, velocity and acceleration. Examples of scalar quantities are
distance, speed, and rate of change of speed.

With one dimensional motion we dealt fairly easily with vector quantities
by using a convention that involved positive and negative signs: motions to

the right were considered positive and motions, to the left were considered
negative. In this lesson we will be considering two dimensional motion, so

it will not be so easy to represent directions. Two dimensional motion
involves motion in a plane, or along a flat surface. For many purposes, we
tend to consider the earth's surface to be flat. Using the earth's surface as
a reference, we can define directions in terms of the points of the compass
(north, south, east, west). Fig. A shows the directions cross which shall be

our primary reference for defining
directions in this lesson. Note that
this direction convention is the same
as that used on most maps.

In order to represent vector
quantities in two dimensions, we shall
draw lines with arrowheads on them.
The lengths of the lines will represent
the magnitudes of the vector quantities,
and the arrowheads will show their
directions. The details of how this is

to be done will be given later.

Exercise 1

1. Explain the difference between vector and scalar quantities.

Fig. A

Wast

i
\ North

-> £aet

V
South

Do the following exercise.

2. For each of the following quantities, indicate in the blank provided
whether it is a vector or a scalar quantity.

(a) 90 km north

(b) 15 cm

(c) the speed of light

(d) the earth's force on the moon

(e) the surface area of the moon
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3. In the following diagrams a number of displacements are represented by
lines with arrowheads on them. The arrowheads represent the direction
of motion. Beside the lines appear distances. On the blanks provided,
write the magnitudes and directions of the displacements. Refer to

directions cross to find the directions.

q( — / 7

o( —

A

&L ~ Osyyy.

d =

1
'

d =

A/

w

y
5
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Any vector quantity such as displacement or velocity may be represented
by a line (or a line segment). The length of this line indicates a magnitude,
and an arrowhead placed at one end of the line represents the direction of

the vector quantity.

One way of drawing a line to represent a vector quantity such as
displacement would be 'to draw a line equal in length to the magnitude of

the displacement in the same direction as the displacement. However, once
we started to deal with displacements having magnitudes more than 20 cm,
we would have difficulty in drawing lines to represent them because of lack
of drawing room. It is more practical to draw shorter lines which are
proportional in length to the magnitudes — in other words, to draw to scale.

The first step in making a scale drawing is to select the scale, and
write it down in some form, such as 1 cm = 1 km or 1 cm = 1 m. In these
examples, the equality sign ( = ) means "represents.” Hence, 1 cm = 1 km may
be read as 1 cm represents 1 km. The scale you select should be the most
convenient one, both in terms of the amount of space you have for drawing,
and in terms of the ease with which you can draw to that scale. Concerning
this latter point, it is often more convenient to use units in whole numbers
when scaling than to use fractions of units.

Once vthe scale has been selected, use the directions cross to determine
how the directions are to be shown on the sheet on which you are drawing.
Normally, to the top of the sheet is northward, to the bottom is southward,
to the right is eastward, and to the left is westward.

Use of the reference directions allows you to determine how the vector line

should be oriented on your sheet. The line may now be drawn using a
ruler and a protractor. It can be labelled with a letter with a small arrow
above it. This way of symbolizing vector quantities allows the person
writing to show whether a scalar or vector quantity is meant. Refer to the
following sample vector representations. (Note that instead of drawing small
arrows, you can draw small bars above the letters.)
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Displacements

Fig. C

Scale: 1 cm = 10 m

— 5O

£

— —
cl<2_

= ^O^VI U/

Velocities

Scale: 1 cm = 10 m/s

30**/y E
y

A

40**/$ A/

<
4CU/r h/

y
5~G^/s 5

More on Direction

So far in this lesson, the directions of the vector lines have been
parallel to the north-south and east-west lines of the directions cross.
However, as you probably know, vector quantities might have directions
that are not parallel to those lines. In order to indicate such directions, it

is necessary to make measurements of angles. To do this, a protractor should
be used. (If you do not have a protractor now, you should obtain one
before you continue with this lesson.)
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As with making measurements of length,
to measure angles it is useful to have a

convenient starting point or reference
point. Actually, to make measurements of

angles on a surface, not only a reference
point is needed, but also a reference
line is needed from which to make
measurements. In Fig. D, several
measurements of angles' have been made.
3oth a reference point and a reference
line are involved in those measurements.
The reference point is the point at which
the N-S and E-W lines of the directions W
cross intersect or cross each other. The
reference line is the N-S line from which
the angles are indicated. Note that each
of the lines drawn at an angle (other
than 90°) to the N-S line is numbered

® ® » (1) » (4) . In order to give the
directions of tne numbered lines, both the
angle and its direction of measurement
from the N-S line must be specified, as
indicated below.

QD 60° east of north
(2) 40° west of north

Q) 30° west of south

© 45° east of south

Note the following things.

1 . A line sloping
east of north.

above the E-W line, and. to the! right of the N-S line is

2. A line sloping
west of north.

above the E-W line and to the left of the N-S line is

3. A line sloping
west of south.

below the E-W line and to the left of the N-S line is

4. A line sloping
east of south.

below the E-W line and to the right of the N-S line is

Thus, for the lines drawn on a piece of paper, upward sloping lines
are associated with north, and downward sloping lines are associated with
south. Also, left and right are associated with west and east, respectively.

If you are not clear on how to use a protractor to make the
measurements of angles such as those in Fig. D, study the following notes
and figures before you go on to do the next set of exercises.

Fig. D
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A protractor is illustrated in Fig. E.

It is positioned so that the 180° line lies

over the N-S line, and the 90° line lies

over the E-W line, with the 90° line

toward the right side of the page. When
this is done, the directions of 60° east
of north and 45° east of south can be
easily read from the protractor. Take
your protractor and place it in the same
position as shown in Fig. E, and you
will be able to see how the angles can
be measured. Notice that the direction
of a line toward the east is either 90°

east of north, or 90° east of south, but
that the direction should be specified
simply as being east.

In Fig. F, a protractor is

illustrated positioned so that it can
measure angles west of the N-S line.

The 180° line of the protractor lies

over the N-S line and the 90° line

lies over the E-W line and pointed
to the left. If you position your
protractor in a similar way, you
will be able to see how the angles
of 40° west of north and 30° west
of south can be measured. Also,
notice that the direction of a line
toward the west is either 90° west
of north or 90° west of south, but
that the direction should be
specified as being west.
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Use a protractor and ruler to complete these exercises.
1.

Represent a displacement of 100 m north by a vector. (Use the scale
given. Indicate the direction of the displacement_by an arrowhead.
Label the line representing this vector quantity d = 100 m north).

Scale: 1 cm = 20 m

2.

What is the displacement (magnitude and direction) labelled d in the
following diagram?

Scale: 1 cm = 10 m

“7* d =
_ d. (Fill in the blank)

3.

What velocity is represented by v in the following diagram?

Scale: 1 cm = 10 m/s

v
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4. Represent a velocity of 70 m/s south by a vector. Label it “v.

Scale =

5. Give the magnitudes and directions of the vector quantities represented
in the following diagrams:

(a) Scale: 1 cm = 25 m/s

<
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6. Draw lines representing the following vector quantities:

(a) 250 m 75° east of north (b) 8.0 m/s 65° west

Scale: 1 cm = 50 m Scale: 1 cm = 1

(c) 750 m/s 80° west of south (d) 20 m 15° east of

Scale: 1 cm = 75 m/s Scale: 1 cm = 5

of north
0 m/s

south
.0 m
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Vector Diagrams 1

Vectors can be used to solve certain kinds of problems. One way of

doing this is to use vector diagrams in which vector lines are drawn using
the same scale and correct directions, and are combined to obtain a
resultant. In physics, the term resultant often is used to name the vector
quantity that results when vectors are combined.

The simplest vector diagram involves two vector lines which are
joined together, with a resultant vector line giving the result of the
combination. Fig. G shows how a vector diagram would be used to solve the
following problem.

What is the resultant velocity of

8.0 m/s east, and 6.0 m/s north? To
solve this problem, a suitable scale
is selected first. Then, a line

representing 8.0 m/s east is drawn.
From the arrowhead end of this line,

the line representing 6.0 m/s north
is drawn. To draw the resultant,
start at the beginning of the first

vector line (point 0) and draw a
line to the arrowhead of the second
vector line. Measurements of the
length of the resultant line and the
angle between it and the N-S line

at 0 give the magnitude and direction
of the resultant respectively. This
procedure is summarized below.

1. Select an appropriate scale.

2. Draw the first vector line to scale and in the correct direction from the
starting point, 0.

3. Draw the second vector line to the same scale and in the correct
direction, starting from the tip of the arrowhead of the first vector
line.

4. Draw the resultant vector line from the starting point, 0, to the tip of

the arrowhead of the second vector line.

5. Measure the length of the resultant line to find the magnitude of the
resultant, and the angle between it and the N-S line at 0 to determine
the direction of the resultant.

Note that an arrowhead should be included at the end of each vector
line in order to clearly show the direction of the vector line.

Fig. G

5 - = Z' Dm^/s

\Jl=6.0«*ls
/vvjv+k

V7 =- S* 0~»/s

^ ^ 5 c/>rv- Xc7Xl^
,
AsO xX

R.-I0 Is S^ Cjl&qX sYvcnxf'h.
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There are two cases in which the procedure described above cannot be
followed exactly. These two cases are: (1) when the two vectors are in the

same direction; and (2) when the two vectors are in opposite directions.

However, it is possible to draw vector diagrams in these two cases, as
illustrated in the following notes.

1. What is the resultant of displacements
of 25 m east and 15 m east?

Fig. H

Sca/xz \ <yrv\ — 5

The method of solving this using
a vector diagram is shown in

Fig. H. However, it is simpler
to not bother with drawing a vector
diagram. Since the vector quantities
are in the same direction, it is

easier to add them: R. - 40

R = d j + d 2 = 25 m east + 15 m east

= 40 m east

2. What is the resultant of displacements Fig. 1

of 25 m east and 15 m west? „ , __ <r-

5caM,
~

Fig. 1 shows the method of

solving this problem using a vector J, - 2.5**.

diagram. However, often it is I

— H
simpler not to draw the vector «

diagram. Since the vector quantities '
I

are in opposite directions, it is

easier to assign a minus sign to

one direction (west), and a plus
I

sign to the opposite direction (east): x— 1

_ £= ICU aaM- d% ~
R = d

t + d 2 = 25 m east + 15 m west

= +25m + (-15 m)

= +10m

= 10 m east.
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Complete Exercise 3 using vector diagrams.

Exercise 3

1. A car travels 600 km west and then 450 km south. Find the resultant
displacement.

2. An aircraft with a velocity of 400 km/h east meets a wind of 180 km/h
north. Find the resultant velocity of the aircraft. (Assume that the
effect of the wind's velocity would be fully transferred to the aircraft.)
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3. A fisherman is near one end of a lake at point A, and he wishes to get
from A to point B on the other side. See the diagram. What would be
his displacement if he
travelled from A to B? Note
that the lines drawn in the
diagram are not to any
particular scale.
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In the preceding section, we examined the method of drawing vector
diagrams when two vector quantities are involved initially, and a resultant
is to be found. Often, this method is good enough to solve problems involving
vector quantities. However, sometimes more than two vector quantities are
involved initially, and it is necessary
a vector diagram we can use basically
illustrated in Fig. J.

The problem is: What is the
resultant of displacements of

12.0 m north, 15.0 m east, and
9.0 m south?

As before, a scale must be
selected, and the vector lines are
drawn according to the scale and
in the_ directions specified. Note
that d

x
begins at 0, d 2 begins at

the tip of the arrowhead of d lf and
d 3 begins at the tip of the arrow-
head of dz . The resultant is drawn
from 0 to the tip of the arrowhead
of d 3 . The only difference between
this method and_the one given
earlier is that d 3 is included, and
the resultant must be drawn to the
tip of the arrowhead of d 3 . This
method can be used with any
number of vector lines, from two
up. Fig. K and L show the use
of this method to solve
multivector problems.

to find a resultant. To do this using
the same procedure as before, as

Fig- J

S c.aJe. .
I.Oc/w = 3.0*".

= I 5. Osn*. JLAaJr
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A search and rescue aircraft is flying low through mountain valleys and
passes. At one point in a gap between several valleys, it has a velocity of

180 km/h west and is acted upon by two winds blowing down two different
valleys. One wind has a velocity of 60 km/h 45

0 west of north, and the
other has a velocity of 50 km/h 60° east of south. What is the resultant of

these velocities?

The method of doing this is shown in Fig. K.

Fig. K

SccJ&L: l-O&r* ~ZO

4S°ofUX

ir3
- 60° o.o*A ^ KTUs+k

R = /QOMs*

j

A- $*{* tu~L&t

^

tr
t
— /SO

EXAMPLE

Find the resultant displacement

of the following displacements:

7.0 km west, 4.0 km south,

2.5 km east, 1.5 km north,

4.5 km east, 2.5 km north. The

method of doing this is shown in

Fig. L.

Note that six vector lines are

involved in the diagram shown in

Fig. L. Also, note that when all

six of the lines have been drawn,

the last vector line ends at the

original starting point. This means

that no resultant line needs to be

drawn, or that the resultant is

equal to zero.

Fig. L

Scab. ;
|. 0c~~ =J.OX~

^ 7. 0 Lwv uu-td-X

i

7

^jr - 5 tcuA'

yr— J
c/3 = £.5

Iwcx. /rw?

Zb kir. cU'MTK,
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Do the following exercise.

Exercise 4

1. Find the resultant of 30 km/h north, 40 km/h 45° west of north and
70 km/h 65° east of south.

2. A man walks from point 0 as follows: 10.0 km 15° west of north, then
20.0 km 75* west of south, then 15.0 km east, and then 5.0 km south
to reach point A. Find the following things.

(a) His resultant displacement with respect to 0.

(b) His displacement from A if he wished to have a resultant
displacement of zero with respect to point 0.
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Lesson Summary

This lesson covered the following major topics.
1.

Vector quantities may be represented by lines drawn to scale in the
appropriate directions, according to an accepted convention.

* H

w £

'S

2. Directions may be conveniently specified using angles measured from the
N-S line using a protractor.

3. To find the resultant of two or more vector lines, the vector lines
should be drawn with the first vector line starting at a point, such as

0, and the next vector line beginning at the tip of the arrowhead of the
first vector line. Then, other vector lines may be drawn from the tips
of the arrowheads of preceding vector lines. The resultant should be
drawn from the starting point, 0, to the tip of the arrowhead of the last

given vector line.

End of Lesson C
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FORCE, INERTIA, AND MASS

The Explanation of Motion

In our study of motion so far, we have been concerned with kinematics,
which deals with the description of motion. To explain why motion occurs, we
must study the area of physics known as dynamics. This approach to the

study of motion, starting with a description of what is happening, and then
trying to explain why dt has happened, is a useful approach in other areas
besides the physics of motion. Usually, it is necessary to know what really

occurred before trying to explain it, especially if you are trying to solve a

problem.

A useful explanation is one that not only is consistent with a particular
law, but also one that can be used to predict what will happen in a

particular situation. An explanation which is logically consistent with a law
is not very useful if it does not provide a way of making predictions which
can be checked or tested. Thus, for an explanation to be satisfactory
scientifically, it must involve the following three features:

(1) It must be logically consistent with certain laws or rules.

(2) It must provide a way of making predictions.

(3) The predictions that are derived from it must be testable, and
once tested must be accurate.

QUESTIONS

1. What is the difference between kinematics and dynamics?

2. The following are concepts of kinematics or dynamics: speed, mass, force,
distance, time, kinetic energy, position, and friction. Which four of
these are concepts of kinematics?

(a) _______
(b)

(c)

(d)
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3. (a) For a scientific explanation to be satisfactory, what features
should it have?

(b) If you test a scientific explanation and find the predictions
inaccurate, what should be done with this explanation?

Familiar Forces and Units of Force

An important concept in the area of dynamics is the idea of force. A
force that most people are familiar with is the force of weight. We can feel

our own weights, especially if we do something that requires that we lift

ourselves — such as exercises like chin ups, push ups or sit ups. We can
feel the weight of other things when we try to lift them. Another force that
people experience is the force of friction. Friction forces act between two
surfaces which are in contact with each other and they tend to act against
the motion of one surface with respect to the other. If there is a large
friction force, it may be very difficult to move something. For example, it

might be much more difficult to slide a desk across a carpeted floor than
across a smooth tiled floor because the friction force between the carpet and
the desk is much larger. On the other hand, very small friction forces might
cause difficulties also, as in the case of walking across smooth ice.

In this course, most of the forces will be expressed in one unit, called
the newton (after Sir Isaac Newton). N is the symbol for the newton. We
will give a more formal definition of the newton later, but to get a feeling
for what a newton involves, consider the following:
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The weight of two golf balls is about 1 N.

The weight of a flashlight battery (a D cell) is about 1 N.

The weight of a softball is about 2 N.

The weight of a two litre carton of milk is about 20 N.

Forces as Vector Quantities

The idea of force as simply a push or a pull exerted on an object is an
easy one to understand, since it is so closely related to everyday experience.
In order to move around throughout each day, a person must exert forces on
a number of different objects. For example, if a person walks out of a
house, he/she must exert forces on the floor through legs and feet as well
as exerting forces through arms and hands on the door in order to open and
close it. It is clear that the direction as well as the size of each force
exerted is important. Inside a house, if you turn the doorknob and push on
an inward-opening door, you won't open it; such a door must be pulled in

order to be opened. This illustrates the necessity of considering forces as
vector quantities.

We can deal with forces as vector quantities by using the same kinds of

methods as we used earlier; that is, we can use lines with arrowheads to

represent forces, and we can use vector diagrams to solve certain kinds of

problems involving forces. Since the preceding lesson was concerned with
representing vector quantities and drawing vector lines, you should be
familiar with the methods of doing this. However, if you are not clear about
some of the methods used, you should review the preceding lesson before
continuing with this lesson.

The simplest situation in which two forces are involved (when it is

necessary to find a resultant) occurs when the two forces act along the same
straight line in the same direction. Such a problem can be solved using a
vector diagram, but usually it is easier to simply add the sizes of the two
forces to obtain the size of the resultant, and indicate its direction as
being the same as the direction of the original forces.

Example 1 Fig. A

What is the resultant of forces
of 20 N east and 16 N east?

A vector diagram solving this
problem is shown in Fig. A.
Below, the problem is solved
without the use of a vector diagram.

Sca4/ :
f Csrr* " 4N

V

w £

S

F
R = Fl + f 2

F^ = 20 N east + 16 N east

s 20N &curfr s. J6N auuX

> —

3 6 A/
F^ = 36 N east

Y

I

I
I

1
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Another simple situation involves two forces which act along the same
straight line, but in opposite directions. As before, a vector diagram may
be used to find the resultant, but it may be easier to make the force in one
direction positive, and the force in the opposite direction negative. Then,
they can be combined to find the resultant.

Example 2 Fig. B

What is the resultant of forces of

20 N east, and 16 N west?
AN

A vector diagram solving this

problem is shown in Fig. B.

Below, the problem is solved without
the use of a vector diagram.

S&oJe : I
£N

W

Make east positive, and west
negative.

|

I

Fp = F i + '

_
K h—

—

F
r = 20 N east + 16 N west

F
r = +20 N + (-16 N)

F
R = +4 = 4 N east

Resultant force is 4 N east.

/fs 2.0N

/£ * A/

H
I

I

H

y

Of course, forces do not always act along the same straight line, and to

find the resultant in such cases it is useful to draw vector diagrams
according to the rules given in the preceding lesson. The following examples
show the application of those rules to problems involving forces.

Example 3 Fig. C

Find the resultant of two forces,
one 4.0 N east, and the other 3.0 N ^ in

I csm = / A/

north. Dcas-*' -

The solution is shown in
Fig. C.

53° *J*o* *1
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Find the resultant of the following

set of forces: 8.0 N north
5.0 N 45

° west of south
6.0 N west

B.OU

PROBLEMS

1 c Two children have a dispute over a toy. Dennis pulls with a force of

25 N, and Margaret pulls in the opposite direction with a force of 30 N.

What is the resultant force on the toy?
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2. While Dennis and Margaret are struggling, a larger child, Timmy,
arrives on the scene and decides to join in. This changes the

arrangement of the forces applied to

the toy, as shown in the diagram.
Using a vector diagram, find the

resultant force on the toy.

suznAjth

3. Three forces act on a spherical object as illustrated in the following
diagram. Find the resultant of

these forces using a vector
diagram.

i
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4. A square sheet of metal weighing 1.2 x

cables, as shown in the diagram.
The forces in the two cables,

and F^, are to be equal in size.

Using a vector diagram, find the
size of each of the forces in the
cable.

10 3 N is to be supported by two
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Although Newton was the first to formally enunciate the statement that

is known as Newton's first law of motion, Galileo provided the line of

reasoning that led to it. Newton's first law of motion is stated as follows:

Every object continues in a state of rest

or of uniform motion in a straight line

unless acted upon by an external unbalanced
force.

This statement tells us that every body resists any changes in its

speed or direction of motion. If at rest the body will remain at rest. If

moving at a constant velocity, it will continue to do so in the absence of

any external unbalanced forces. Note that the reference is to an unbalanced
force. What is meant by the term "unbalanced force?" We can answer this

question by recalling that when we drew vector diagrams, we sometimes
obtained resultants of zero. When the vectors involved in the diagrams were
forces, this meant that when the forces were combined, they all balanced
each other. Thus, for balanced forces, the resultant is zero. For unbalanced
forces, the resultant force is not equal to zero. Often, the term "unbalanced
force" refers specifically to the non-zero resultant of several forces acting
on a body.

From this law, a definition of inertia can be derived. One form of the

definition of inertia is that inertia is the tendency of a body to remain at

rest or to continue moving uniformly in a straight line.

Many common occurrences illustrate the inertia of bodies. In a train,
you appear to be thrown backward as the train begins to move forward.
Your inertia tends to keep you at rest, while the train drives out from
under you. When you shovel snow, you first get the shovel and the snow
moving, then stop the shovel with your arms. The snow continues in motion,
exhibiting its property of inertia. A motor boat drifting after the engine is

stopped, a curling stone sliding down the ice, your tendency to fall

forward when the bus you are riding is suddenly stopped, are all examples
of inertia. Note that inertia is not a force, it merely describes a property
of all objects. Sometimes the property that we have named inertia is also
called mass.

QUESTIONS

1 . What is inertia?



Physics 30A - 9 - Lesson D

2. First of all you are standing in a bus which starts to accelerate from

rest - then you fall towards the back of the bus. After you have
regained your composure the driver applies the brakes suddenly.
Whereupon you fall towards the front of the bus.

In which case (first, second) is inertia shown by a stationary

body?

In which case is inertia shown by a moving object?

3. (a) What is meant by the phrase "balanced forces?"

(b) What is meant by the phrase "unbalanced forces?"

4c Two men must push a stalled car to the side of a road. They find that
it is quite difficult to get the car to move at first, but that once it is

moving it is much easier to push the car. Why is the car easier to push
once it is in motion?
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5. From what you know about inertia, does the use of seat belts in moving
vehicles make sense? Give an explanation for your answer.

Inertia and Mass

When they are first met, the ideas of inertia and mass often do not

seem to be very clear. Sometimes, this is especially true for the idea of

mass. Mass was once considered to be a way of representing the amount of

matter in a body. After all, it usually seems to be true that when a
body appears to have more matter in it — that is, it looks bigger — it is

more "massive." However, one problem with looking at mass in this way is

that it may lead to some confusion. This is because what is being done is

that volume is being used as a guide for estimating mass. Volume is a
direct indication of the size of a body; that is, it is a way of measuring
how much space a body takes up. However, estimating volume is not a
reliable way of determining how much matter is in a body. To understand
this, we can do a simple thought experiment.

Suppose that there are two
identical cans suspended from the
ceiling by strings. Refer to

Fig. E. The tin cans have covers
on their tops and are labelled with
the letters A and B. One can is

empty, and the other can is full of

concrete. By just looking at the
cans, can you tell which one is

empty and which one is full of

concrete? Unless you have X-ray
vision, you probably will not know
which is which. How can you find
out?

Probably, the easiest way to do this is to give each can a light push
with your hand. You will be able to feel the difference in the resistance to

the force applied by your hand. If can B is much harder to start moving
than can A, you will know that can B is full of the concrete while can A is

the empty one.

This thought experiment illustrates some important things. It shows
that a judgement about masses of bodies cannot be done reliably only on the
basis of volume. Also, it shows that we can find out about the masses of
bodies by applying forces to the bodies, and observing how these forces
affect the motions of the bodies. In other words, it shows that inertia and
mass are closely related.
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The relationship of mass and inertia is given in the following statement:

mass is a measure of the inertia of a body.

Using the above statement and the method described in our thought
experiment, we can provide a further definition. This definition is provided
below.

It is possible to determine which of two masses is

greater by applying equal forces to each mass for

equal time periods and observing which mass speeds
up less. That mass is the greater one.

The above statement is a more detailed way of saying that mass is the

measure of the inertia of a body. It is what is sometimes called an
operational . definition. An operational definition is a statement which
describes an activity in order to explain the meaning of a word. Operational
definitions are very important in physics and other sciences because they
provide procedures which make clear how you can test for the presence of a

phenomenon.

In making measurements of mass, the unit which is used often is the

kilogram. Approximate masses of some objects with which you may be
familiar are given below. Note that kg is the symbol for kilogram.

Mass of two golf balls is about 0.1 kg.

Mass of a flashlight cell (D cell) is about 0.1 kg.

Mass of a softball is about 0.2 kg.

Mass of a two litre carton of milk is about 2 kg.

Something that should be remembered when dealing with mass (or

inertia) is that it is not the same as weight. Weight is a force, and is a

vector quantity, having both magnitude and direction. Mass (or inertia) is

not a force, and it is a scalar quantity, since it has magnitude, but not

direction. Mass (or inertia) is the same regardless of the direction used in

the measurement. In other words, the same tendency of a body to resist a
change in its state of rest or of uniform motion will appear even though the
direction of the unbalanced force changes. This difference between mass and
force will be emphasized further in a later lesson when we learn more about
the relationship between weight and mass.

QUESTIONS

1. What is an operational definition?
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2.

Give an operational definition of mass.

Lesson D

3.

What is the difference between volume and mass?4.

Is it possible for a body to have a much larger volume than another,
but have a smaller mass? Explain this, giving an example.5.

A cargo handler in a space station works under the conditions known as
weightlessness. There are several identical cartons floating in front of

him; one of the cartons is full of gold bars, and the others are empty.
How would he find the carton with the gold bars without opening the
cartons?

6.

What is the difference between weight and mass?



Physics 30A - 13 - Lesson D

Lesson Summary

This lesson covered the following major topics:

Explanation of motion - Motion is described in the study of kinematics, and
is explained in the study of dynamics. A satisfactory scientific explanation
must have several features.

Familiar forces and units of force - Two kinds of forces with which most
people are familiar are the forces of weight and friction. The newton,
symbolized by N, is the unit of force often used in physics.

Forces as vector quantities - Forces have magnitude and direction, and
hence are vector quantities. They can be represented by vector lines, and
vector diagrams may be used to solve problems which involve finding the

resultant of a group of forces acting on a body.

Newton's first law of motion.

Inertia and Mass - Mass is a measure of the inertia of a body. Operational
defintions help to explain the meaning of words. The kilogram, symbolized
kg, is the unit of mass often used in physics. Mass (or inertia) is not the
same as weight.

End of Lesson D
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NEWTON'S SECOND AND THIRD LAWS OF MOTION

Newton's Second Law of Motion

Newton's first law of motion specifies the conditions under which a body's
velocity will remain constant: when the resultant force acting on the body is

zero, there will be no change in velocity (zero acceleration). The question of

what occurs when the Resultant force is not zero is dealt with by Newton's
second law of motion. When a non-zero resultant force acts, there is change
in motion of the body. From your everyday experience, you can visualize
that if you are pushing a body and the body accelerates with an
acceleration 'a', then the greater the push the greater the acceleration will

be. You can say that acceleration is directly proportional to the force
applied, which is the push in this case. Mathematically we can write,

a * F

Similarly you can visualize that if you apply the same push or force to a
smaller mass it will accelerate more than if you apply the same push or
force to a larger mass. Thus you can say that acceleration is inversely
proportional to the mass of the body. Mathematically, we can write,

Combining these two facts, you can write

Choosing proper units, so that k - 1

,

we have a - -
m

The "word form" of Newton's second
law can be stated as follows: the
acceleration of a body is in the
same direction as the unbalanced
force acting on the body, and
varies directly with the magnitude
of the unbalanced force, and
inversely with the mass of the
body.

Note that if the unbalanced
force is zero, acceleration will be
zero, and velocity will be
constant.

Thus the so-called 'force-equation' is obtained as

F = m® a

Force = mass x acceleration

The most common unit of force is the newton. The newton is defined as the
force that, applied to a 1 kg mass, will give it an acceleration of

1 m/s 2 i.e.

1 N = 1 kg x 1 m/s 2

Note that force and acceleration are vector quantities, and that mass is
a scalar quantity. When an unbalanced force (or non-zero resultant force)
acts on a body, the direction of the acceleration is always the same as the
direction of the unbalanced force (sometimes the unbalanced force also is
called the net force). Sometimes the formula form of Newton's second law is

given as if the acceleration and force were not vectors: F = ma. Such usage
is acceptable as long as it is remembered that the net force and the
acceleration have the same direction.
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What will be the acceleration of a 1000 kg car if an unbalanced force

of 800 N is applied?

Given

:

F = 800 N

m = 1000 kg

To find: a

Solution

:

a = F/m

800 N
1000 kg

800 kg* m/s 2

1000 kg

= 0.800 m/s 1

EXAMPLE 2

A pony with a mass of 300 kg pulls a cart with a mass of 1000 kg.
With what force will the pony have to pull on the cart if he is to

accelerate at 2.0 m/s2
? Assume no friction in the wheels.

Note: The force on the cart accelerates the cart only, therefore only
the mass of the cart should be considered.

Given: m = 1000 kg

a = 2.0 m/s 2

To find: F

Solution: F = m* a

= 1000 kg x 2.0 m/s 2

= 2000 kg m/s 2

= 2.0 x 10 3 N

Note that in EXAMPLES 1 and 2 acceleration and force have been treated
as if they were scalar quantities. Since the acceleration and the unbalanced
force have the same directions, no reference to direction has been made. In
the following example, direction takes a more prominent role.
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Two forces act on a body of 25 kg at the same time: 40 N east and 30 N
north. What is the acceleration of the body?

Given: F
(

= 40 N east

= 30 M north

m = 25 kg

To find: a

Solution: The resultant or unbalanced force must be found and then
the acceleration can be found. A vector diagram is used to

find the unbalanced (or net) force, F^.

Scale: 1 cm - 10 N

E ~ W

By Newton's second law:

F.j, = ma

50 N
25^1

= 2.0 m/s 2

Since the unbalanced force and acceleration have the same direction, we
have ‘a = 2.0 m/s % 53° east of north.
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1.

State Newton’s Second Law (a) in words, (b) in equation form,

(a)

(b)

2. (a) Can Newton's Second Law be applied in situations involving

friction?

(b) If you apply a force of 10 N to an object and the force of friction

is 4 N, what is the magnitude of the force that must be used in

applying F = ma?

3 . The same unbalanced force is applied to bodies of masses 1 kg, 3 kg,
and 5 kg . If the acceleration produced on the first body is 15 m/s 2

,

what will be the acceleration of the other bodies?

4.

To push a book at constant velocity along a table requires a constant
applied force. What is the value of the net force on the book?

5 . A net force of 10 N gives an object a constant acceleration of 4.0 m/s 2
.

What is the mass of the object?
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6 . A mass of 15 kg on a frictionless surface is given an acceleration of

3.0 m/s 2 by an applied force. What was the value of the force?

PROBLEMS

Attempt the following problems and show your work»

1. A cart accelerates from rest to 6 m/s in 2 s. The force of friction is

5 N. If the cart is being pushed by an 11 N force, what is the mass
of the cart?

2. A 1500 kg car moving at 15 m/s crashes into a wall and comes to stop

in 0.50 s. Assume that the acceleration of the car while stopping was
uniform. Calculate the collision force in the crash.

Remember a =
A t
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3. A freight engine of mass 20 000 kg accelerates uniformly from rest to a
velocity of 2.0 m/s in 5.0 s. If it is pulling a train of 20 cars each
with a mass of 10 000 kg, what is the force in the coupling between
the engine and the first car?

(Hint: Is the mass of the engine needed?)

4. A 60 kg body has three forces acting on it: 18.0 N north, 10.0 N west,
and 15.0 N 45° west of south. Find the acceleration (magnitude and
direction) of the body.
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The third major contribution Newton made to our understanding of

dynamics does not concern motion directly, but points out a different

consequence of forces.

Strike your hand against a wall. Your hand will experience force on it.

When you hit a ball with a bat, the bat exerts a force on the ball. At the

same time, the ball exerts a force on the bat. These two forces are equal in

magnitude and opposite in direction.

This is an example of Newton's Third Law of Motion which states that
if one object applies a force to another, the second object applies an equal
and opposite force to the first object.

Newton's Third Law clearly shows that:

1. forces always occur in pairs

2. each force of the pair acts on a different object

3. each force of the pair is equal in magnitude but acts in the

opposite direction to the other.

We often refer to one force in the pair as an action force and the other
as a reaction force. This provides us with another definition of Newton's
Third Law as "To every action there is an equal and opposite reaction."

Sometimes, Newton's third law and its use produces some confusion. This
may occur because the action and reaction forces referred to are mistakenly
considered to be the same as two balanced forces. As you know, if two equal
and opposite forces act on a body, the resultant force will be zero, and no
acceleration of the body will occur. If the action-reaction couple is considered
to be the same as two equal and opposite forces acting on the same body,
then it may seem that Newton's third law is saying that resultant forces
acting on bodies always must be zero. This is mistaken because the action-
reaction couple does not act on the same body. Therefore, the action and
reaction forces 'are not the same as equal and opposite forces that produce
a resultant of zero. An action-reaction couple consists of two equal but
opposite forces that occur on two bodies interacting with each other.
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QUESTIONS
1.

State Newton’s Third Law of Motion.

2. Name the action and reaction forces in each of the following situations.

Specify the objects on which the two action and reaction forces act.

(a) A man holds up a book with his hand.

action force

reaction force

(b) The earth exerts a gravitational force on the moon,

action force eanth ptuilA on the moon

reaction force moon puLiA on the eanth

(c) The north pole of a magnet exerts an attractive force on the south
pole of another magnet.

action force

reaction force

(d) A leaf falling to the ground pushes down on molecules of air.

action force

reaction force

Note that the two forces listed in each case make up an action-
reaction couple.

3. A man is stranded near the centre of a frozen pond. Imagine that the

pond surface is perfectly frictionless.

(a) Could he walk to shore?
(b) How would you suggest he could get to shore?

(a)

(b)
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You have already learned that the inertia of an object provides a way
of defining mass. The greater the mass of an object, the greater is its

tendency to keep at a constant velocity. Therefore mass is often defined as
the quantitative measure of the inertia of an object.

Weight is the resultant of all the gravitational forces on an object.
Weight is not a good physical standard; it varies from place to place. Mass
on the other hand is constant, at ordinary velocities, even when moved from
place to place.

When a mass, m, is allowed to fall freely, it is the constant downward
force of gravity on the mass that gives rise to its constant acceleration. If

Newton's Second Law is applied to this motion, the force, F, is none other
than the weight, F^, of the body, and the acceleration, a, is the

acceleration due to gravity, a . Therefore for falling bodies the force
g

equation, F - ma, can be written as Fw = ma
w g

or weight = mass x acceleration due to gravity.

Weight and force have both magnitude and direction and are therefore
vector quantities. Mass, on the other hand, is a scalar quantity, because it

has only magnitude. The distinction between weight and mass is illustrated
by imagining a given body to be carried out into free space far removed
from other bodies and their gravitational attraction. There, a body at rest
will still have its mass, but its weight will be zero. Weight on the earth is

due to the gravitational attraction of the earth and value of acceleration
due to gravity is taken to be 9-81 m/s 2

. or 9-8 m/s 2
.

One often hears of a weight referred to"Tn grams or kilograms. This is

confusing because^ grams and kilograms are mass units, not weight units.

This expression of weight in mass units should be avoided.

EXAMPLE 3

Calculate the weight of a body of mass 1.0 kg.

1.0 kg

9.8 m/s 2

ma
g

Given: m =

To find: W

Fw =Solution:

- 1.0 kg x 9.8 m/s 1

= 9.8 N
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PROBLEMS

1. Calculate the weights of the following masses,

(a) 1.50 x 10 2 kg

(b) 16.0 kg

2. What is the mass of a body which has a weight of 1.87 x 10 3

earth's surface?

Lesson E

N at the
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Nearly everyone has heard the story of how Newton, while sitting under
an apple tree one day, was struck on the head by a falling apple. This
incident set Newton to thinking and led to the discovery of Newton's
universal law of gravitation, which states that, "any two bodies attract
each other with a force that is directly proportional to the product of their
masses and inversely proportional to the square of the distance between
them." Written in symbols,

e „ nii m 2
f

where m, and mt are two masses at a distance, d, apart, measured centre
to centre. The above proportionality is changed into an equality by
introducing a constant. Then the equation becomes:

where G

t? r*F = G
~1F~~

6.67 x 10
~w N » HI®

£$F~

and is called "the gravitational constant".

For this course you will not have to use the formula

p ^ m i m 2F “ G -32—

However you should be familiar with the kinds of variations of gravitational
attraction shown in the figure below.

Fig. A The effect of distance change on gravitational force.

= l°i ZOO

This object is attracted to the earth with
a force of 100 N at the earth's surface
which is 6400 km from its center.

The same object at this point is two times
as far away from the center of the earth.
The force is (1/2) 2 or 1/4 as much and is

therefore equal to 25 N.

The object is now 3 times as far away, and
the force is therefore (1/3)

2 or 1/9 as

much as it was originally — approximately
11 N.
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Study the situation shown in Fig. A. Since the mass remains the same
(M), the change in the attraction toward the earth depends upon the fact

that the distance between M and the earth changes. Since the force of

gravitational attraction varies inversely as the square of the distance
between the two bodies, we may write

and

where F = force of gravitational attraction,
d = distance between the bodies,
k = a constant.

If the force of gravitational attraction on an object at a distance, , from
the earth's center is F lf and the force of gravitational attraction on the

same object a distance, d 2 , from the earth's center is F 2 , we have

Finding the ratio between the two forces, we have

F. (l/d, 2V 1 1

'
V / n -(1737*) ‘(dj7

" x
i

k \a7/ (37P

1
=
d7^

(d 2Vd2* =
(djr

2

If Fj is the weight of the object at the earth's surface, then d t is the
radius of the earth (6400 km). If d 2 is known, we can find F2 :

Fi surface weight /d 2V
77

=
ft = toy

with F^ = surface weight

Assuming d x = radius of the earth = 6400 km, and that d2 is in

kilometres, we have
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We may apply this to the example shown in Fig,

100 N, and F 2When d
2

= 12 800 km,

surface
„ /6400 kmV

= Fwv“5;

—

)
' then

F, = 100 KI / 6400 km \ 2

N
\i2
"
800 '"km/

= 100

= 25 N.

1'2 "800 '"ki

sr - 100 n©

Lesson E

A, page 11.

(weight 6400 km above the

The gravitational attraction varies directly with the product of the

masses of the two bodies involved:

F * m MrE

where m = mass of the body, Mg = mass of the earth.

Using a constant,

F = k m M
£

If we have two masses, m x and m 2 both at a distance d from the center
of the earth, the two gravitational attraction forces are:

F !
= k m, Mg and F 2 = k m 2 M^;

where = mass of the earth.
E

We can find the ratio of Fi to F 2 as:

Ft
FT

k m i M^

k m 2 M,
mi
m 2

The ratio of gravitational forces indicates that if two bodies are the
same distance from the earth's center, the ratio of attractive forces is

equal to the ratio of their masses. For example, if at the surface of the
earth a body of mass 1.0 x 10 2 kg has a weight of 9.8 x 10 2 N, and
another body has a mass of 3.0 x 10 2 kg, we can find the weight of the
second body as follows:

F
t _ m^ F^_ _ m^

K " m 2* K “ m
i

f 2 9.8 x 10 2 N x
3.0 x 10 2 kg
1.0 x 10 2 kg

= 2.9 x 10 3 N.

The weight of the second body is 2.9 x 10 3 N.
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We now have two expressions in which the ratio of gravitational forces

may be found for (1) a body of constant mass which changes its position
with respect to the earth's center, and (2) two bodies of different masses
which are the same distance from the earth's center. We may expand these
developments to the case of a body which changes both its position and mass
with respect to the earth. See Fig. B.

Fig. B The combined effect of distance and mass change

r t'L?>OC *%*,

The force acting on mass M at the surface
of the earth is 20 N.

This mass is 3 times as great, so the
force is multiplied by 3. However, the
mass is also 2 times as far away. Therefore
the force is divided by 2* or 4. The
combined effect of the change in mass and
distance is to make the force 3/4 times as
great, or 15 N.

The expression for this case is

In this case:

Sometimes R is used in place
of d to indicate the distance
between the centres of two
masses..

eg Fg
Gnix m2

“R1
”

F
t = original gravitational force

F 2 = new gravitational force
mx = original mass
m2 = new mass

= original distance from the center
d 2 = new distance from the center

As an example, consider a body which moves from the earth's surface
to a distance of 6400 km from the surface, and which has its mass changed to

3 times its original mass. If its original weight was 20 N its new weight may
be calculated as follows?
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F l = 20 N, m j
= m, d, = 6400 km

F 2 is unknown, m 2 = 3 m, d 2 = 12 800 km

F 2
= 20 N

fir)(-

= 20 N(3)0)

6400 km \

12 BOO km/

= 20 N x

= 20 N (3
)(|)

2

(!)
= 15N

The new gravitational force is 15 N.

Do the following exercise and send it in for correction,,

EXERCISE

1. You have learned that weight and mass are not identical.

(a) Which one is a vector?

(b) Which is independent of position?

2. At any given position on the earth's surface you double the mass of

a body. What then happens to its weight?

3.

Express the following statement in mathematical form (as a
proportionality using F , m

3 , m 2 ): the force of gravitational attraction
between two bodies is directly proportional to the product of the
masses (m

1
m 2 )

.
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Express the following statement in mathematical form: the force of

gravitational attraction between two bodies varies inversely as the
square of the distance between the two bodies (d 2

).

5.

Study Fig. A on page 11 of the lesson. According to the diagram, from
what point in the earth is the distance between the earth's mass and
the body of mass M or 3 M measured?

Approximately, what is the distance between that point and the earth's
surface (give the value shown in the diagrams)?

6.

Study Fig. A on page 11 of the lesson.

If the object of mass M were 3200 km above the earth's surface, it

would be km from the earth's center. This means it would
QfiOf) Irm

be
6400 km or 1.5 times the earth's radius from the earth's center.

7.

If the attraction at the earth's surface is 100 N, and using the idea
that the force of gravitational attraction varies inversely as the square
of the distance between the two bodies, the force of attraction at

3200 km would be
^ p

-

g ^

> x 100 N = .

Similarly, a body which is 9600 km above the earth's surface wduld
have a position from the center of the earth that would be
( ) L
r-T p-A-

.
— = times the earth s radius.

Thus if the body were attracted to the earth with a force of 100 N when
at the surface, it would be attracted with a force of

j
p- x 100 N = when 9600 km above the surface.

Now study Fig. B on page 14 of the lesson. Note that the effect of both
mass and distance is considered in Fig. B.

From question 6 above, if a body of mass M is 9600 km above^the
surface, it would be attracted by a force that would be -> re-

times the force of attraction at the surface.

However, if the mass were increased four times to 4 M, the force of
attraction experienced by the mass of 4 M would be
4 M—

w

= 4 times the force it would experience at the surface.

If the surface force were 20 N, the force at 9600 km above the surface

would be
j T 20 N
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8. Suppose an animal used in a space-flight test weighs 50 N at the
earth's surface. What would have been the minimum weight of the
animal if it reached a maximum height of 1600 km above the earth’s
surface?

Distance of animal from earth's centre (

Radius of earth
~

*T

Gravitational attraction varies as
1

(distance comparison )
*

/.Attraction 1600 km above the surface is

~~>T
t x attraction at the surface

y-Z" X 50 N =

9. A rocket initially weighing 6.0 x 10 6 N is sent into orbit 3200 km from
the earth's surface. After using all its fuel, and dropping a number of

stages, the space vehicle (in orbit) has a mass of one-tenth of what it

had on earth. What force of attraction to the earth would be experienced
by the rocket while in orbit? (See expressions on page 14 of the lesson).
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Newton's Second Law: An unbalanced force acting on an object produces an
acceleration in the direction of the force. The acceleration varies directly
as the force and inversely as the mass of the object i.e.

F = m a

Unit of force is the newton. When a newton is applied to a body of mass of

1 kg, the body's acceleration will be 1 m/s 2
.

Newton's Third Law states that action and reaction forces are equal and
opposite and act on different bodies.

Weight of _a body is equal to the magnitude of gravitational force acting on
it. i.e. F^- m *aw g

Newton's Law of Gravitation states that any two bodies with masses m
f

and
mt at a distance 'd' apart attract each other with a force which is

directly proportional to the product of the masses and inversely proportional
to the square of the distance between them. Mathematically stating

F = G , where G = 6.67 X 10“ 11 and is called

the gravitational constant.

End of Lesson E
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MOMENTUM, ENERGY, WORK, AND POWER

Conservation of Mass

Does something ever disappear without a trace? Do objects ever appear
in empty space where previously there was no matter? Common experience
seems to indicate that neither of these happen. Yet how can we be sure?

Early in the beginnings of modern science, Sir Isaac Newton discovered
a concept by which we can measure quantity of matter. His second law of

motion states that the ratio of force to acceleration of a body (F/a) is

always constant. This quantity we call mass.

A famous chemist, Lavoisier, discovered that chemical reactions do not
change the masses of the substances involved even if there was burning,
emission of light or heat or even explosion. If you burn a substance and
carefully collect or preserve all the products you will find that the mass of

the products equals the original mass plus the mass of oxygen used for

burning. This led to the law of conservation of mass. In any closed system
the mass of the system remains constant.

Self-Check Exercise #1

1. Which of the following is the most obvious evidence that the amount of
matter remains constant?

(a) A rock cliff wearing away into sand on the beach.
(b) A water puddle drying in the sun.
(c) The slow disappearance of a moth ball.
(d) The appearance of the morning dew on grass that was

completely dry the evening before.

2. What is the standard by which we define mass?

(a) The volume or space occupied by an object.
(b) The ratio of force to the acceleration produced in a body

by that force.

(c) The extent to which a body resists compression.
(d) The volume occupied by the matter.

3.

What is the process by which we usually measure the mass of a body?

(a) By noting the effects of the earth's gravitational force on
it, that is, its weight.

(b) By observing the volume that it occupies.
(c) By analyzing its chemical composition.
(d) By accelerating it with a given constant force.

You will find the answers to these questions on page 3.
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The Search for a Quantity of Motion That is Conserved
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When a charge of dynamite explodes in a face of rock, particles and
dust fly furiously in all directions. But it is not long before the dust and
rubble settle down and become motionless. If you drop a hard rubber ball
on concrete it will bounce a number of times but eventually it too settles to

rest. The motion has disappeared. Or has it?

After the discovery of the law of conservation of mass it was natural to

ask whether there is a quantity of motion that is conserved. Careful
experiments in isolated systems (an isolated system is one in which there is

no net force acting from outside the system) show that the quantity, mass
times velocity (mv)

?
is conserved. This quantity mxv is called momentum and

it is sometimes represented by the symbol *p. Thus, ~p = niv. Note that *p is

a vector because *v is a vector.

The law of conservation of momentum states that the total momentum of

all the parts before an interaction (such as a collision) is the same as
their total momentum after the interaction.

Total momentum before - Total momentum after

where

= momentum of body 1 before the
interaction

“p
2

= momentum of body 2 before the
interaction

*p
i

^ = momentum of body 1 after the
interaction

*p * = momentum of body 2 after the
interaction

We can also say that, since total momentum is unchanged, the momentum
gained by one body must equal the momentum lost by another. The total
change of momentum is zero.

Thus where

a'Pj + a*P 2
=0 *p

i
= change in momentum of body 1

A*p
t

= -AP 2 1?2 = change in momentum of body 2

Self-Check Exercise 2

If there are two bodies then

n»^l ^ yr

Pi + P 2 = Pi + P 2

1. Find the momentum of a 0.14 kg baseball thrown at 30 m/s.

2 . What is the change in momentum of a 1000 kg automobile that slows
from 10.0 m/s to 5.0 m/s?
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3. A 0.20 kg arrow is shot horizontally into a 1.0 kg block of wood
(initially at rest) which is free to move on a frictionless surface. The
initial velocity of the arrow was 60 m/s. If the arrow stays embedded
in the wood, calculate the velocity of the arrow and wood after impact.

Answers to these problems can
attempt to do them before you look

be found on page 4.

at the answers.
Be sure that you

Answers to Self-Check #1, page 1

1. a 2. b 3. a

Various Kinds of Collisions

If you place a single billiard ball in the centre of the table and
strike it directly on with another billiard ball the second ball will stop
dead while the first one goes off with the same velocity as the second one
had before they struck. Why? Why do the balls not both have the same
velocity after collision?

Christian Huygens, a famous Dutch physicist, suggested that there is

another quantity of motion that is sometimes conserved. It is the sum of the
mv z products of all the objects involved. If we take half of that product to

obtain {mv 2
, we will have an expression for what is known as kinetic

energy (KE).

Momentum is always conserved in a collision, but kinetic energy is not
always conserved. Any collision where KE is conserved is called an elastic
collision. Any collision where KE is less after the collision than before is

called inelastic. Any collision where KE is totally lost (that is, the objects
all come completely to rest) is called completely inelastic.

For example, if a ball drops to the floor and bounces back to the same
height from which it came, the collision is elastic. If it comes back only
part way it is inelastic. If it hits the floor with a plop and sticks there
(as a mud ball would) the collision is completely inelastic.
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1.

What is the momentum of a 2.4 kg ball that is moving at 15 cm/s
right? (Change cm/s to m/s).

2.

What is the kinetic energy of the ball in question 1?3.

If the ball strikes another object (initially at rest) inelastically how
much KE do the ball and object have together? (Give, not a specific
value,but a range of values which they could have.)

i

Answers on page 6.

Answers to Self-Check #2, pages 2 and 3

1. P = mv = 4.2 kg m/s 2. -5.0 x 10
3 kg m/s

3. Momentum after = momentum before

(1.0 kg + 0.20 kg)v = 0.20 kg (60 m/s)

v = 10 m/s

Energy

There are probably few ideas in the history of science that are as
interesting and fascinating as the idea of energy. As so often is the case,
scientists made advances in this area, not so much by doing experiments and
making observations but by changing their thinking. Sometimes revolutions
take place as much inside the minds of people as they do in the external
circumstances. And so it was with energy.
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What is energy? We take it so much for granted in our world that we
forget how elusive a concept it can be. Energy is not a piece of matter (or

is it?) that we can see and touch and weigh. It is almost ghostly with no
apparent substance or existence of its own. The fact is that we understand
and define energy solely by the results or effects it produces on objects
(masses) that we can see and touch and (sometimes) hear. Energy, we say,
is whatever there is that can squeeze an object into a new shape, or move
an object from here to 'there when otherwise it would stay put, or accelerate
an object to a new vigor of motion. Energy is the property of something that
enables it to do work. In order to keep things clear and straightforward
scientists consider it important to define work. Work is done whenever a
force acts through a displacement in the direction of the force. In symbols
Work = F x d. Thus if 1 N of force east acts through a displacement of 1 m
east the work done = lNxlm=lN*m=lJ (joule). If however, 1 N
east acts on a body and the body moves 1 m south, work done = 1 N x 0 m
east = 0. You can see that if you strain at an object with great vigor yet
do not move it, by the scientific definition you are doing no work. Energy
then is the capability of something to do work. Work is the actual
expenditure of energy. (Note that work is defined in terms of the product of

force and displacement. Since force and displacement are vector quantities,
their "product" (work) is a special kind of product, called a "dot product."
We will not study this kind of product. In most of the cases with which we
shall deal, the force and the displacement will be in the same direction,
and we will be able to calculate work by using just the magnitudes of

force and displacement. In some cases, force and displacement will not have
the same direction. To calculate work in those cases ,it will be necessary
to find the component of displacement that is in the direction of the force.

In most cases this can be done by using some trigonometry: finding the
cosine of the angle between the force and the displacement, and multiplying
it by the magnitude of the displacement. See Self-Check Exercise #4,
question 3.)

Self-Check Exercise #4

1. What is the work done when an object of 5.0 kg is moved by a force of

2.3 N north through a distance of 1.6 m north?

2. What is the work done by a 70 kg man who climbs a 3.0 m ladder?
(Hint: first find the gravitational force on the man — the force he must
overcome to climb upward.)
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3. What is the work done by a force of 350 N south that moves an obiect
4.5 m southeast? (Hint: find the component of the displacement that is

in the southerly direction.)

Answers can be found on page 8.

Answers to Self-Check #3, page 4

1. 0.36 kg- m/s 2. KE = j mv 2 2.7 x 10"2 k
§‘f

2

3. Between 0 and 2.7 * 10“ 2

How Fast Can You Climb Stairs?

Sometimes it is important for us to know not only whether an object can
be moved from place to place but how fast it can be moved. If you were to

climb the stairs of the AGT building or the Calgary Tower at a normal pace
it would require perhaps five minutes. By elevator, however, it would likely
take less than one minute. We say that the elevator produces more power
than the person's muscles. Power is defined as the rate of doing work. In
algebraic form:

The units of power are:

Power = P
Work _ Fd
T ime t

^-5? =i= W (watts),
s s

Take an example:

How much power does a person with a mass of 70 kg develop when he
climbs stairs to the top of a 100 m building in 300 s?

p _ Fd ma
g
d

_ (70 kg x 9.8 m/s 2
) x 100 m

t t
"

t
" v

300 s

= 229 W = 2.3 x 10 2 W = 0.23 kW

Note that this is almost the power that would be given off by four 60 W
light bulbs.

If we note that y = v (velocity) we can also write the power equation

as P = Fv. Finally we observe that work or energy can be found by
multiplying power by time. Work = Pt
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1. What is the power developed by an engine that lifts 25 kg a vertical

distance of 10.0 m in 2.00 min?

2o What is the power developed by a grader whose blade exerts a force of

3.0 >< 10
4

" N as it moves at 0.80 m/s?

3. An automobile with a power output of 12 kW exerts a force of 480 N as
it moves along the highway at constant velocity. How fast is the
automobile moving? (Find the answer in both m/s and km/h).

Answers on page 12.

Lesson Summary

The law of conservation of mass states that in any interaction of

substances, physical or chemical, the amount of mass remains constant.

The momentum of an object is defined as the product of its mass and its

velocity

:
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In any collision or interaction of objects momentum is the quantity of
motion that is always constant. This is the law of the conservation of
momentum.

Another quantity of motion that is sometimes conserved is the product
mv 2

. We can determine that the amount of work that can be done by a
moving body if it gives up all its motion is imv2

. This is called the
kinetic energy of a body.

If kinetic energy (KE) is conserved in a collision or interaction, the
collision is described as elastic. If KE is not conserved the collision is
inelastic.

Energy is the capability of doing work. Work is defined as the product
of a force and the distance through which it moves:

W = Fd

Power is the rate of doing work:

Exercises

1. Which of the following is an expression for work?

(a) Fv
(b) P/F
(c) Ft

(d) ma d
g

2. What must you multiply F by to get an expression for power?

(b) v
(c) ma

(d) d
(
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3. Which of the following quantities of motion is conserved in an inelastic

collision?

(a) mv
( b ) mv 2

(c) Imv*
(d) v

4. If 50 mL of alcohol are mixed with 50 mL of water, the mixture amounts
to 98 mL. Is this a contradiction of the law of conservation of mass?
Explain.

5- What is your momentum while you are walking at 1.4 m/s south?

6. A football player of mass 100 kg has a momentum of 800 kg* m/s to the
right. What is his velocity? (Remember that velocity includes direction.)

7. An empty railway car of mass 5000 kg moves down a level track with
negligible friction at 2.4 m/s. As it passes a coal chute 2500 kg of coal
are dumped into it. What is the speed of the car after passing the
chute?
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8. (a) A 14.0 kg ball moving at 14.0 m/s approaches a 12.0 kg ball
moving at 10.0 m/s. At collision the 14.0 kg ball slows to 11.0 m/s.
What is the velocity of the 12.0 kg ball after collision? (Note in

this question that all of the velocities are in the same direction.
If the 14.0 kg ball had bounced back its velocity would have been
negative.)

(b) What is the total kinetic energy of the two balls before collision?

(c) What is the total kinetic energy of the two balls after collision?

(d) Is the collision elastic or inelastic?

Why?
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(e) What do you think has happened to the difference between the

energy before and the energy after?

9. How much work is done when a 15.0 N force moves an object 3.8 m?

10c Lifting an object 3.2 m requires 75 J of work. What is the mass of the

object? (Assume that the body is lifted at constant slow velocity.)

11.

A 500 N hammer blow drives a nail 3 mm into a board. How much work
is done?

12.

How much power does it take to do 5.0 x 10 2
J of work in 8.0 s?

13.

What is the power developed by a man who lifts 30 bales of hay, each
of mass 15 kg, a distance of 1.0 m in 1.0 min?
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14.

What is the power delivered by a locomotive that exerts a force of

9.00 x 10" N to pull a train at 1.00 x 10 2 km/h? (27.8 m/s)?

15.

How much energy is consumed when an 800 W dryer element in an
electric dishwasher operates for 10 min? (Give your answer in both
watt-hours and joules.)

16.

How long does it take a 40 kW engine to do 100 000 J of work? (

End of Lesson F
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KINETIC ENERGY AND POTENTIAL ENERGY

Kinetic energy is the energy (or capability of doing work) that any
body possesses because of its motion. Any moving object has kinetic energy.
We can easily show that its energy is imv 2

if we remember that it requires
a force to accelerate a body from rest (v = 0) to some velocity v.

Suppose a constant force F is applied to a body of mass m giving it a
constant acceleration, a. We know that in time t a body constantly
accelerating at a will cover a distance of d - iat 2

. But we also know that

the velocity v = at and so t = — . Therefore d - ja (—) = = iv 2 /a,

Now the work done when a force, F acts through a distance, d is

Work = Fd

Here the work done - F * d

lV 2

= ma x j—3.

= |mv 2

Thus the body has acquired an energy of |mv 2 as a result of the work
done on it. Notice that tfre KE is not dependent at all on a. It depends only
on the mass and the velocity. It does not matter how fast that velocity was
achieved.

Self-Check Exercise #1

1. What is the KE of a 1000 kg automobile travelling at 90 km/h? (Note:
change km/h to m/s.)

2. What force must be applied to the automobile if it is slowed down to 0
from 90 km/h in 10 s?

Answers on page 4. Be sure to attempt to solve the problems on your
own before checking the answers.
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A bow consists of a long narrow piece of wood or metal across the end
of which a string is attached. An arrow is fitted to the string, the bow is

held in one hand and the string pulled back with the other. In order to

pull the string back the string hand must exert a force through a distance.
This means that it does work. What happens to that work? When the bow is

fully stretched there is no motion so no KE is involved. There must be
energy stored in the bow. We have evidence that this is so because when
the string is let go it pushes against the end of the arrow and accelerates
it to a high velocity. It does work on the arrow because it pushes the arrow
through a distance. The energy stored in the bow is changed to kinetic
energy in the arrow. The energy in the bow is called potential energy —
potential because it is stored in the bow because of its stretched position.

One can also produce stored energy by stretching or compressing a
spring (as in an air gun), by stretching or twisting a rubber band (as in

a model airplane) or by pulling magnets apart. Energy can be stored by
lifting an object above the ground against the force of earth's gravity (as
in a piledriver). In all these cases potential energy is created due to the
position or condition of the mass involved. KE on the other hand is solely
due to the motion of a mass.

Self-Check Exercise #2

1. A bow requires a force of from 0 to 200 N as it is stretched from rest

position to its fully extended position. Its arrow is 80 cm long. How
much energy is stored in the bow when it is ready to shoot the arrow?
(Hint: Use the average force required to stretch the bow to find the
energy.

)
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Assume that all the energy stored in the bow is transferred to the
arrow. What KE does the arrow have just as it leaves the bow?

3.

If the mass of the arrow is 100 g what is the velocity of the arrow?

4. (a) How much potential energy is stored in the body of a 75 kg man
who climbs to the sixth floor of a building that has a distance of

3 = 0 m between floors? (Hint: be careful in finding the total

distance — use a diagram.)

(b) How does this potential energy compare with his kinetic energy as
he travels on a bicycle at 14 m/s?
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5. A 100 kg refrigerator is moved 5.0 m up along a stairway as shown in

the diagram. What is the potential energy of the refrigerator at the top

of the stairway? (Hint: Note that it is the vertical height that must be
considered since the force of gravity acts directly downward. It does

not require much force to move a refrigerator horizontally if it is on
rollers to reduce friction.

)

4.0 m

Answers on page 7.

Answers to Self-Check #1 , page 1

1. KE = i mV 2 = 3.1 x 10 5

J 2. F = m ^- = -2.5 x 10
3

iM

2 At

The Relativity of Potential Energy and Kinetic Energy

In order to calculate KE of a body we must know the velocity of the
body. Usually we assume that we are measuring velocity with respect to the

surface of the earth. Yet that need not be so. For example when you are
flying in an airplane at 240 m/s your kinetic energy with respect to the
earth is i(m)(240 m/s) 2 but with respect to the plane your KE is 0 because
you are not moving with respect to the airplane — you are sitting in your
seat.

Likewise with potential energy. If you are on the sixth floor of a
building your potential energy with respect to the earth is ma h (where h

is your height above earth) but your PE with respect to the sixth floor is

zero or nearly zero because you are standing on it.

Thus when we calculate KE or PE we must either clearly assume that
the earth's surface is the frame of reference or we must specify what frame
of reference we are using.

Conservation of Mechanical Energy

In ordinary usage "to conserve" means to save something or not
to waste something. In this lesson, when we talk about conservation of
mechanical energy, we are not concerned so much with saving the energy,
but rather with accounting for all of the energy that might be involved in
some process or event. Usually, in physics the phrase "conservation of
energy" refers to the idea that it is possible to explain what has happened
to the energy involved in a physical interaction.
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What happens when a body falls from a certain height to the surface of

the earth?

We know first of all that before it falls its potential energy with
respect to the ground is ma^h where h is its height above the ground.

We also know that as it falls it has a constant acceleration a
g

(neglecting air friction) as the earth's force of gravity acts on it. Its

velocity gradually increases until it hits the ground.

What will be its kinetic energy just as it strikes the ground? Well we
know that KE = imv 2

. But also we know that h = ja t
2 where t is the time

g
v

of the fall and that v = a t or t = — . Putting these two together we have
g a

g

g l
a

(

h = = ia

g,
g

i V
= ?— . We could also write this as v = 2a h.

g g
g

Now KE = imv 2 = >;m(2a h) = ma h. But ma h is the original potential
energy. g g g

The mathematics seems to be telling us that the KE at the ground
equals the PE before it falls. Apparently what the body has lost in PE it

has gained in KE. Indeed if we examine the body at every point along its

path we will find that whatever is lost as PE is gained as KE. Another way
of saying this is that KE + PE = a constant.

Self-Check Exercise #3

1. A body of mass 409 g rests on a ledge 20 m above the ground? What is

its potential energy?

2 . What is the potential energy after it has fallen 5.0 m?
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3. What do you think its KE should be after it has fallen 5.0 m?

Lesson G

4. Find its velocity (using v2 2a h) after it has fallen 5.0 m.
g

5* Now find its KE at this velocity c

6.

How does this KE compare to your guess in #3?

7.

What is its KE + PE after it has fallen 5.0 m?

8.

How does this compare with the PE initially?

Answers on page 12.

Any system in which the KE + PE of an object is constant is called a
conservative system. In any such system there is a conservation of
mechanical energy.
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Another example in which conservation of energy may apply is when an
object is given PE and then falls to the earth attaining maximum KE, then
drives something through a distance. In this case work is done on the

object by the KE which comes from the original PE.

Example: A 100 kg pile driver is lifted to a height of 3.06 m. It falls and
drives a post 10 cm into the ground. Find the average force on the post.

PE = 100 kg x 9.8 m/s 2 x 3.06 m = 3.0 x 10 s

J

F x d = Work = PE

Lesson Summary

Kinetic energy is the energy that a body possesses due to its motion.
It is calculated from KE = imv2

. We know that a moving object has KE
because it takes a definite force acting through a distance to accelerate it

to the velocity it has acquired.

Potential energy is the energy that a body possesses due to its position
or condition. It can be found by multiplying an average force required to

move the body from some initial condition to some final condition by the
distance through which the force acts: PE - F x d.

Both PE and KE are relative quantities because they are both calculated
with respect to some frame of reference.

A conservative system is one in which KE + PE is a constant. In such a
system there is conservation of mechanical energy.

Answers to Self-Check #2, pages 2, 3 and 4.

1. PE = F
av

d = 80 J 2. 80 J 3. v 2 K E

" 1(0.100 kg) “ 0.050 kg
80 J = 80 kgmVs 2

= 1600 m 2 /s 2
; v = /l600 m 2 /s 2 - 40 m/s

4. (a) PE = ma h =

§
i.i x io 4

j

(b) KE = 7350 J PE is more
= 7.4 x 10 3

J

5. 2940 J
= 2.9 x 10 3

J
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1. (a) What is the kinetic energy of a 1 g bug flying at 2 m/s?
(b) What is his kinetic energy if his mass doubles because he's

carrying something?
(c) What is his kinetic energy if he's carrying nothing but

doubles his speed?

2.

A force is exerted on a 10 kg object for 3.0 m, on a frictionless

surface, giving the object a velocity of 20 m/s. Find:
(a) the kinetic energy of the object and
(b) the force that acted on the object.3.

A 200 kg iceboat is pushed 36 m across a frozen lake by a wind of

average force 100 N. Assume that the frictional forces are negligible and
the boat starts from rest. Find the speed of the boat after 36 m using
each of the following methods:

(a) Using Newton's second law to find the acceleration of the boat. How
long does it take to move 36 m? How fast will it be moving by then?
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(b) Find the final speed of the boat by equating the work done on it

by the wind and the increase in its kinetic energy. (Use

F x d = mv 2
. Assume v is unknown. Solve for v.)

4.

How does potential energy differ from kinetic energy?5.

Describe three different situations or systems that have potential
energy.

6. (a) Find the KE of 80 kg sprinter who does the 100 m dash in 10.0 s.

Assume the final velocity is the sprinter's average velocity.
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(b) How high would the sprinter have to climb so that his PE would
equal the KE he has during a sprint. (That is, if all his KE could
be converted to high jump energy how high could he jump?)

7.

A 20 kg object is 2.0 m above the ground. What is its potential
energy?

8.

It takes 200 J to push an object to the top of a frictionless ramp. What
is the potential energy of the object? How much work can it do in

sliding down the ramp?

9. (a) A spaceship, the Ambrosia, is in an orbit around the earth 1600 km
above the earth. Another spaceship, the Olympia, is in a lower
orbit at 900 km above the earth's surface. How much energy would
it take to boost a 200 kg rocket containing a 75.0 kg man from
Olympia to Ambrosia? (Note: the mean value of a between 900 km

§
and 1600 km above the earth’s surface is 6.86 m/s 2

). Express
distances in appropriate units.
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10 .

(b) If the boosting were to be done in three hours how much power
would the rocket engine need to produce?

(a) At the fairgrounds is a hammer swinging contest where a 1.0 kg
object is accelerated upward along a pole toward a bell at the top

of the pole. The object is accelerated upward by a blow from a

10 kg hammer that strikes a bar
pivoted at its centre. The bell

is 3.2 m above the resting place
for the 1 kg weight. At least

how fast must the object be
travelling at the bottom in

order to hit the bell at the top 7

(b) At what point along the pole will the 1.0 kg object have the most
PE after the hammer strikes?

(c) At what point along the pole will the 1.0 kg object have the most
KE after the hammer strikes?

(d) At what point will the object have half KE and half PE?
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(e) How much is the KE at the point where PE = KE?

Answers to Self-Check #3, pages 5 and 6

1. PE = 0.409 kg X 9.8 m/s 2 x 20 m = 80 j

2. PE = 0.409 kg X 9.8 m/s 2 x iiBin 60 j

4. v 2 = 2 a h =
g

2 x 9.8 m/s >< 5.0 m = 98

v = 9.9 m/s

5. KE = imv 2 = j:(0. 409 kg) (98 m 2 /s 2
)

= 20 J

7. 20 J + 60 J
= 80 j

8. The jsame.

End of Lesson G
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HEAT, TEMPERATURE AND THE CONSERVATION OF ENERGY

The quantity of motion that is always conserved in an interaction

between two or more bodies is called momentum (mv). It is conserved
regardless of what else happens. But we have also learned that in many if

not most interactions (such as collisions between two objects) the KE is not

conserved. What happens to the KE that is lost? We have discovered that KE
can be changed to PE and back again. Is it possible that we can somehow
account for the loss of KE in a collision? Could there be conservation
of energy after all?

An answer to that question begins back in the time of ancient Greece
when philosophers were asking questions like:

What is the nature of matter?
Can it be divided up into small and smaller pieces forever?
Or does one finally come to a smallest possible piece?

Two men of Athens, Leucippus and Democritus, about 440 B.C. suggested
that matter is made of invisible (and indivisible) particles called atoms.
(The word atom means uncuttable). The idea was not popular and died out
until the eighteenth century. Then, as a result of observations in chemistry,
John Dalton revived the atomic theory of matter.

Today, the idea that matter is made up of very small particles has
captured our thinking because it is so useful in explaining and predicting
many observations. Its usefulness in physics began already in the l?th
century when Leibniz, the famous German philosopher and mathematician
suggested that not only is mv conserved but so also is mv

2

even in inelastic
collisions. The KE that appears to be lost in an inelastic collision is only
"dissipated among the small parts." However, macroscopically

, we can still
say that only in an elastic collision is KE conserved.

Today the kinetic molecular theory of matter, as it is called, makes
four claims:

1. All matter is made up of small collections of extremely small particles.
The particles are called atoms, and the collections, molecules.

2. Between the molecules are spaces whose size depends on the state of the
substance (solid, liquid or gas) and the size of the molecules.

3. The molecules act on all other molecules with forces of attraction.

4. All the molecules of a substance are in more or less rapid motion.

Along with this theory a lot of attention in the 17th century was being
given to heat. Some thought heat was a fluid but Count Rumford, an English
exile of the late X8th century, discovered that you could get as much heat
as you want in boring cannons as long as you continue to put work into it.

Then around 1840, J.P. Joule, an amateur English scientist showed that you
can get a definite amount of heat from an equally definite amount of
mechanical energy. Rapidly it was becoming clear that heat is actually a
form of energy. Late in the 18th century several people had suggested that
heat is really nothing more than the motion of molecules. And now this idea
had experimental support in the work of Rumford and Joule.
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Today we think of heat as related to the motion of molecules.
Temperature is related to the average KE of moving molecules while heat is

related to the total KE of all the molecules together.

What then happens when KE is lost in an interaction between two
objects? Whenever two substances are in contact with each other there is a

force of attraction between them. When the two substances are moved
against each other, the molecules are pulled away a bit from their position
by this force and then snap back into position. The result is increased
motion of the molecules which we sense as heat. A very simple demonstration
of that is to rub your hands together. They become warm as the work you
do in moving your hands is changed to heat — increased motion of molecules
in your hand. An automobile that is coasting we would expect to continue
moving indefinitely according to Newton's first law of motion. However it will

eventually come to a stop as its KE is changed to heat in the tires and in

the road.

The force that results from the attraction between molecules is called
friction. It is friction that makes it possible for KE to be changed to heat.
Thus the amount of KE that seems to disappear in an interaction is actually
changed to heat as the substances are deformed or warm up from the
interaction. This may happen through friction or simply through direct
collision of the molecules as happens in a collision. The result is that the
molecular motion increases. The average KE of the molecules becomes greater.
Heat energy is added to the bodies and their temperatures rise.

All of this suggests that the energy is not lost but is simply changed
in form. This is the law of conservation of energy.

Self-Check Exercise #1

1. Which of the following assumptions from the kinetic molecular theory

help best to explain where lost KE is to be found after an inelastic

interaction?

(a) Matter is made up of very small particles.

(b) There are spaces between molecules.
(c) There are forces of attraction between molecules.
(d) The molecules are in more or less rapid motion.

2. Which of the following helps to explain why KE seems to disappear in

an interaction of two bodies?

(a) Matter is made up of very small particles.

(b) There are spaces between molecules.
(c) There are forces of attraction between molecules.
(d) The molecules are in more or less rapid motion.

3. Which of the following assumptions helps to explain why it is possible

to transfer energy from KE of a body to heat in the body or surface
that it moves over?

(a) Matter is made up of very small particles.
(b) There are spaces between molecules.
(c) There are forces of attraction between molecules.
(d) The molecules are in more or less rapid motion.
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4. To which of the following kinetic molecular assumptions is temperature
most closely related?

(a) Matter is made up of very small particles.

(b) There are spaces between molecules.
(c) There are forces of attraction between molecules.
(d) The molecules are in more or less rapid motion. ___

5. A flat piece of wood of mass 20 kg moves over a flat wood surface due
to application of a steady 80 N force. The force of friction is 70 N and
the object moves for 10.0 s. The wood starts from rest.

(a) What is the accelerating force?

(b) What is the acceleration?

(c) How far does the body move in 10.0 s?

(d) How much energy is lost to the force of friction over this distance?

(e) How much KE does the body have after 10.0 s?
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(f) What is the total energy supplied to the body?

(g) Calculate the total energy expended from the total distance
travelled and the total force exerted.

Answers to Self-Check Exercise #1 on page 6.

Note that in #5 of Self-Check Exercise #1 most of the energy is lost to

friction. Only a bit of it is stored as KE in the moving piece of wood. The
frictional force could be greatly reduced if the object were rolling rather
than sliding. Much more of the energy could be changed to KE.

Heat and Temperature

Recall the observation that Count Rumford made as he was busy boring
cannons. As long as the boring continued, heat was produced in the cannon.
As long as mechanical energy is put into the system, heat can be produced.
This suggests that heat is a form of energy. If the kinetic molecular theory
is accepted, heat is really a form of kinetic energy on a small scale.
Leibniz was quite right when he suggested that lost KE is actually
"dissipated among the small parts."

J.P. Joule went on to show that a specific amount of heat is produced
by a specific amount of mechanical energy. This suggests the idea of the
conservation of energy something which will occupy our attention a little

later.

Friction is one source of heat. It is due to the attractive forces
between molecules which can be used to transfer mechanical energy of

motion on a large scale to the KE of the molecules on a small scale. As the
body moves over a surface, the molecular forces cause the molecules of the
surface to vibrate faster, producing heat. Another way to heat a surface is

to put it in contact with a hotter surface. In the hotter surface the
molecules are moving rapidly. As they strike the slower moving molecules of
the cool surface they pass on some of their energy and slow down. The cool
surface molecules speed up. Eventually all the molecules have the same
average KE and the temperatures of the two bodies are equal. Thus heat can
flow between bodies through molecular collisions if the bodies are in
contact.
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We recall from a previous discussion that heat is related to the total

KE of a collection of molecules while temperature is related to the average
KE of the individual molecules.

Specific Heat Capacity

One of the striking things that we can discover about substances is

that each one has its. own heat capacity. We know for example, that metals
heat up and carry heat much more rapidly than plastic or glass. Similarly
a mass of metal cools off more rapidly than say an equal mass of water.
We are not equipped to do an experiment to show that this is so, but if we
were, we would find that if we take 1 kg of a number of substances and
heat each of them up by 10°C that they absorb widely different quantities
of energy. Our results could be summarized as follows:

HEAT ENERGY REQUIRED TO RAISE THE TEMPERATURE OF
ONE KILOGRAM OF SELECTED SUBSTANCES BY 10° C

Substance Energy Required

1 kg - Iron 4 980 ]

1 kg - Aluminum
1 kg - Copper 3 900
1 kg - Lead 1 280 ]

1 kg - Glass b 700
1 kg - Water 41 900

Self-Check Exercise #2

1. Which of the above substances requires the least energy to change its

temperature by 10
0
C?

2. Which, of the above substances requires the most energy to change its

temperature by 10 °C?

3. Suppose you have a source of heat that can provide 3000 J.

(a) Which of the above substances would have its temperature raised

the most by 3000 ]? _______

(b) How high would the temperature go?

Answers to Self-Check #2 on page 7.
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Answers to Self-Check Exercise #1, page 2.

1. d 2. a 3. c 4. d

(a) 80 N - 70 N = 10 N (b) a = -
m

10

20
N
kg 0.50 m/s 2

(c) d = la t
2 = i(0.50 m/s 2

) ( 10 s) 2 = 25 m

(d) 70 N X 25 m = 1750 ]
= 1 .8 x 10

3

J

(e) V = at and KE = imv2 = |m(at )
2 = 250 ]

ii N3 e cn x 102
]

(f) 1750 J + 250 J = 2000 J
= 2. 0 x 10* J

(g) 80 N X 25 m = 2.0 x 10 3
J

The results in the table and exercise above show that each substance
has a different heat capacity. Usually we indicate that fact by assigning
a specific heat capacity. The specific heat capacity of any substance is the
heat required to raise the temperature of one kilogram of that substance by
one degree Celsius. Following is a table showing Lne specific heat
capacities of some well-known substances.

Substance Specific Heat Capacity
(]/kg-°C)

water 4190
alcohol (wood) 2510
aluminum 909
copper 390
gold 132
iron (cast) 498
lead 128
mercury 139
silver 236
glass 670

The definition of specific heat capacity suggests a formula to calculate
the total number of joules of energy involved whenever a mass of substance
is heated or cooled. It is:

ti = mcAt
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Here h is the heat energy (heat absorbed or heat given off), m is the

mass of the substance, c is the specific heat capacity and At is the

temperature change. Thus the amount of heat absorbed by a body depends on

its mass, its specific heat capacity and the temperature change.

Self-Check Exercise #3

1. What is the heat lost when a 25 kg pail of water drops in temperature
from 40 °C to 10°C?

2. What is the mass of a piece of lead that requires 5808 ] to heat it from
25*C to its melting temperature 327.

5

e
C?

Answers on page 14.

Answers to Self-Check Exercise #2, page 5.

1. Lead 2. Water 3. Lead

4.
IffjQ j

x 10°C = 23.4°c = 23°

C
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An interesting thing happens when water is heated to its boiling point.

Up to that point every kg of water absorbs 4190 J for every increase in

temperature of 1°C. But at 100 °C the temperature stops increasing. Each kg
absorbs 2.261 * 10

6

J (2261 kj) without changing temperature as it changes
from water to water vapor. This value (2261 kj) is called the heat of

vaporization of water. Similarly when water cools to its freezing temperature

0°C it will lose 4190 ] per kg for every decrease in temperature of 1°C. But

at 0°C its temperature stops changing even while it loses more heat. Every
kg of water loses 3.35 * 10

s

J (335 kj) as it changes from water to ice.

The opposite happens when ice is melted. 335 kj of heat must be added to

each kg of ice at 0*C to change it to water at 0°C.

Example: How much heat is lost when 2.0 kg of water vapor condense, cool

to 0°C and freeze?

h = (2.0 kg x 2.261 x 10 6 J/kg) + (2.0 kg x 4190 J/kg x 100° C)

+ (2.0 kg x 3.35 X 10 5 J/kg) = 4 522 000 J + 838 000 J + 670 000 J
=

= 6 030 000 J = 6 030 kj = 6.0 x 10 3 kj.

Conservation of Energy

It was discovered in the eighteenth century that heat is a form of

energy. That means simply that heat is capable of doing work. That fact

was shown clearly in the invention of the steam engine where heat obtained
from burning coal was changed to mechanical energy. Thus it became clear
that there are two kinds of energy. And if there are two, why not more?

As more and more observations and experiments were made in physics and
chemistry it became clear that there were in fact a number of different
kinds of energy.

Electrical energy is the energy due to the forces that exist between
opposite electrical charges.

Chemical energy is the energy contained in the bonds that form between
atoms to form molecules. For example, natural gas molecules are mostly
methane, CH 4 . When CH 4 burns^oxygen joins with the gas molecules to

break them up and energy is released in the form of heat.

Light energy is the energy that comes from rapidly changing magnetic
and electric fields that form waves.

Nuclear energy is the energy contained in the forces that hold the
nucleus of the atom together.

Mechanical energy is due to either the motions of masses or the
positions of masses in a gravitational field.

Energy can change back and forth into any of these different forms but
when it does so no energy is lost or gained. The quantity of energy remains
constant. We have no absolute proof for this idea of conservation of energy
but it has helped to explain and predict so many relationships and events
in the physical world that we feel justified in accepting the law with
complete confidence.
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Some examples of common changes in energy are:

1. Electric light bulb — electrical energy is changed to heat and light

energy.

2. Automobile engine — chemical energy is changed to heat energy which is

then changed to mechanical energy.

3. Electric generator - mechanical energy (from a turbine or engine) is

changed to electrical energy.

In all cases the total energy remains constant — only the form changes.

Lesson Summary

The kinetic molecular theory of matter suggests that heat energy is a
form of molecular motion — KE on a very small scale.

Temperature is related to the average KE of each of a collection of

molecules while heat is related to the total energy content of the collection.

Energy seems to disappear in some interactions between bodies because
there is a change in its form. In large masses energy is often lost to

friction.

The law of conservation of energy says that energy may change from
one form to another but then the total amount of energy remains constant.
This law is extremely important in helping us analyze, understand and
study physical happenings that would otherwise be very difficult to

analyze.

The specific heat capacity of a substance is the energy absorbed or
given off by 1 kg of the substance for every 1®C change in temperature.

Heat lost or gained by a substance is given by A = me At.

The heat of fusion is the energy required to change a kilogram of the
substance from solid to liquid. The heat of fusion of water is 335' kj/kg or

335 J/g.

The heat of vaporization of a substance is the heat required to change
one kilogram of the substance from liquid to vapor. The neat
of vaporization of water is 2261 kj/kg or 2261 J/g.

There are many different forms of energy and one form of energy can be
changed to other forms. In doing so the total amount of energy remains
constant.
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1.

According to the kinetic molecular theory, what is heat in a substance?

2.

What quantity of motion is conserved in an inelastic collision?

3.

What happens to the KE that is not conserved in an inelastic collision

or in a situation where an object moves over a surface?

4.

What makes a swinging pendulum come to rest? Where does the energy of

the pendulum go?

5.

A large balloon carries a man to a particular height above the ground,
and then remains stationary at that height. A man having a mass of

80.0 kg jumps from the balloon, and falls for 180 s, reaching a
velocity of 63.0 m/s downward.

(a) Calculate his average acceleration.
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(b) Why does the value of the average acceleration differ from the

value of a (9.3 m/s 2
)?

g

(c) Calculate the value of his kinetic energy if he had fallen freely
for 180 s.

(d) Calculate the kinetic energy he actually possesses.

6. What happens to the molecules of a body absorbing heat?
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7.

What happens to the molecules of a body which is cooling?

8.

In terms of molecules, what is the difference between temperature and
heat?

9. (a) What is the heat required to melt a 25 kg block of ice at 0°C, heat
it to boiling (100°C) and completely vaporize it?

(b) Which of the three processes above requires the most energy?

10. (a) Name five different forms of energy.
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11 .

• 12.

(b) Give examples of three different kinds of energy changes (other

than those given in the lesson notes.)

0.025 kg of water is in a copper container having a mass of 0.18 kg.
If the water and container are cooled from 30° C to 10°C, how much
heat is released by them?

A mercury thermometer is at 20.0® C and then is placed in hot water at
90.0® C. If the thermometer has 0.0240 kg of glass in it, and 0..00150 kg
of mercury in it, how much heat would it absorb if it was warmed from
20.0° C to 90.0° C?
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INTRODUCTION TO WAVES

Waves as Energy Carriers

It is an absolutely lovely evening, warm and with not a whisper of a
breeze. The sun's rays glow red against the clouds and through the distant
trees. You are standing beside a small pond circled by overhanging trees.

You start with a jerk - as a sharp plop breaks the silence. A pulse of

ripples spread out from where a squirrel dropped a small nut onto the
mirror-like surface of the pond. A twig bobs up and down as the pulse
passes it on its way to the shore.

Next day you are standing on the shore of a lake. Boats are idly

resting against the piers. You hear in the distance the purr of a motor.
Soon the boat is in sight with a single occupant. The prow points upward as
the hull of the boat emits a long V of wave disturbances outward into the

calm water. The boat passes the piers, boats motionless, the water smooth.
Then suddenly the glassy surface bends upward as the wave arrives. The
boats bob up and down tugging lightly at their moorings. The pulses slap
against the shore one by one, then subside to a mere ripple.

You have just witnessed the formation and propagation of simple waves
in a medium that we use and see everyday. You observed that the waves had
a source, some input of energy — a falling object, a moving boat. You saw
the wave travel at a certain definite speed. Neither wave pulse reached the
shore instantly. You noticed its unique kind of disturbance as it passed
objects. The objects bobbed up and down but did not move with the wave.
You saw the wave expending energy as it caused movement of objects and
created sounds on the shore.

Waves are disturbances in a medium, usually with a regular pattern,
that carry energy through the medium. Such waves as those described above,
where the medium moves at right angles to the wave’s forward motion
(medium moves up and down, wave moves forward), are called transverse
waves. In a simple two-dimensional way we can represent a continuous
train of waves as follows.

Fig. A
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The wave has a number of features. It has an amplitude — the distance
from the normally level surface of the medium to the peak or crest of the
wave.

Fig. B

It has a wavelength (represented by X - lambda, a letter of the Greek
alphabet) — the distance between neighboring crests or troughs of a wave.
A complete single wave consists of a crest and a trough (the lowest point in

the disturbance).

Fig. C

It has a frequency (in Hertz - Hz - the number of waves per second),
the number of complete waves that are formed in a time of one second. The
frequency of the wave is determined by the rate at which the source
vibrates.

It has a period (T), the time it takes for a wave to be completed
from beginning to end.

And finally a wave has a speed (v) which is the distance covered by a
crest or trough (or any other part of a wave) in a unit of time.
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There are some simple mathematical relationships that tie these
characteristics of waves together. For example suppose the frequency of a
wave is f and the wavelength is x . This means that f waves are produced
every second.

The wavelength of each of the waves is X , If we multiply the number
of waves by the length of each wave we obtain a value for the total

distance of the wave train. The wave train has travelled for one second.

f waves/s * Xm = fx m/s

Note that m/s are units of speed. (The term "waves" is a dimensionless
or unitless quantity — it is simply a number obtained by counting). Thus
fx is the speed of the wave and we can write:

v = fX

This of course also means that

f = j and X = X

Another relationship is that between period and frequency. If the
frequency of a wave is 10 Hz (10 waves per second) then one wave must be
formed in 1/10 s. The period of that wave is 1/10 s. It takes 1/10 s to

make one wave and 1 s to make 10 waves. Therefore we note that:

T
1

" 7

The units of f are Hz or waves/s or simply s
-1 (which means 1/s) since

"waves" has no units.

Thus T = 1/f = 1/s
- 1

s and the units of T are seconds.
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To summarize:

Characteristic of wave Symbol Units

wavelength X m
frequency f waves/s or Hz or s~
speed V m/s
period T s

amplitude A m

The last characteristic (A) is independent of the other four. It depends
only on the energy produced by the source of the waves. It is the amplitude
of the wave that carries the energy.

Self-Check Exercise #1

1. Match the following values with the wave characteristic it represents:

10/s a. wavelength

0.25 m b. speed

0.32 s c. frequency

10 14 Hz d. amplitude

3.0 x 10 8 m/s e. period

10 77 m

300/s

2, Using a cm ruler and calculations find the following values for the
wave shown. The four wavelengths shown are formed in 0.25s.

(a) amplitude

(b) wavelength

(c) period
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(d) frequency

(e) speed

Answers to Self-Check Exercise #1 on page 8.

Sine Waves

You were introduced to the trigonometric relationship called the sine of

an angle in Lesson A. Recall that the
sine of an angle is defined as Fiq* E

sin A = —. (See Fig*

If A is 0® the side a in the
figure is 0 and sin A = CL If A is

90 * the side a actually lies on the
side c and b is 0, Thus

sin 9(f = — = E -
c c

1* Thus the sine

of an angle varies from 0 to 1 while
the angle varies from 0® to 90°.

What happens if the angle becomes larger than 90 ? Imagine a number
line, or rather two number lines crossing each other at right angles. Numbers
up and to the right are positive.
Numbers down and to the left are rig. ^
negative.

— i

On this set of number lines draw a line 1 unit long. This will form
side c of a triangle. The sides a and b
are formed if we draw perpendicular jr

\a Q
lines from the end of c to each of the

“

number lines.

Now the sine of angle A is

sin A = - = a.
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As A becomes larger a changes

,

becoming larger too. What happens
when A gets larger than 90*?

Look at the diagram. Again we can
draw perpendiculars to the axes but
note this time that the bottom side of

the triangle is -b rather than
+b e The sine of angle A is simply
a
T

= a -

Note that as A goes from 0* to 90°

goes from 90a to 180* sin A goes from
the sine of A goes from 0 to 1. As A
1 to 0.

What happens if A is greater than 180° ? Again refer to the diagram.
Here both the triangle sides are
negative. This means that p-, £

. —a 3sm A = — = -a.

As A goes from 180
0

to 27Cf

sin A goes from 0 to -1. We can
now guess that as A goes from
270° to 360° (or 0* where we
started from) sin A goes from
-1 to 0. If we draw these values
on a graph they would look like

this:

Fig- J

Where have you seen this shape before? It is exactly like the diagram
for transverse waves on page 1! For that reason the transverse waves that
we have been talking about are called SINE WAVES since their shape is

like that of the graph of the sine function.
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We have already noted that the amplitude of a wave is the distance that

the crest or trough of the wave is away from the undisturbed surface.

If you watch a water wave carefully as it travels across the surface of

a lake you may notice that it becomes smaller and smaller (in amplitude, not
wavelength) and gradually disappears. This gradual reduction in amplitude
is called damping. Since the amplitude of a wave is related to energy,
damping simply means that the wave is losing energy to the medium in which
it travels. We can illustrate damping as follows:

Fig. K

As the wave moves farther and farther from its origin its amplitude
becomes less and less. Damping is usually caused by forces of friction or

by the wave transferring its energy of motion to objects.

Longitudinal Waves

So far we have studied transverse sine waves, waves in which the
motion of the particles or medium is at right angles to the direction of the
waves' motion. There is another kind of wave where the vibration of the
wave is in the same direction as the waves' motion. Instead of having high
and low points in the wave we have ^instead, compressions and rarefactions.
At some places in the wave the particles of the medium are squeezed closer
together than normal. This forms a compression. At other places the particles
of the medium as they vibrate form a region where the particles are farther
apart than normal. This is called a rarefaction. Compressions and
rarefactions travel outward from a source just like crests and troughs do
for a transverse wave. A longitudinal wave can be illustrated as follows in
Fig. L.
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One of the most familiar examples of longitudinal waves is sound waves
in air. Sound waves are formed by some body vibrating back and forth. As
it vibrates the molecules of the nearby air are alternately squeezed closer
together and moved further apart. The resulting compressions and
rarefactions travel outward from the source at about 344 m/s (when the air
is at sea level and20°C). This speed changes somewhat as the temperature
and pressure of the air changes.

Self-Check Exercise #2

Assume that in all of the following situations the pressure is that at

sea level and the temperature is 20® C.

1. What is the wavelength of sound waves from the A note of an organ
pipe? (The frequency of A is 440 Hz).

2. What is the frequency of a sound wave that has a wavelength of 1.0 m

Answers to Self-Check Exercise #2 on page 13.

Answers to Self-Check Exercise #1

1. c, a or d, e, c, b, aord, c

2. A = 1.4 cm, X = 4 cm, T = 0.0625 s, f = 16 Hz, v = 64 cm/s .
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The term phase is used to describe how two (or more) waves are
related to each other. For example, consider the following two waves:

waves are said to be in phase when the particles of the two waves at any
point both have the same direction of displacement and the same direction of

velocity.

Now consider the following two waves.

Note that when one wave particle is up the other is down. And note
also that at a given time one particle M is moving downward while the
other particle N is moving upward. Such waves are said to be out of phase.
There is a phase difference of 180® between the two waves. Two waves are
said to be out of phase when at a given point the particles in each of the
waves have opposite displacements and are moving in opposite directions.

It is, of course, possible to have two waves that are out of phase by
less than 180

0
. For example, see Fig. 0.
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These two waves are out of phase by 90°.

It is interesting to observe what happens when we mix two waves that
are in phase or out of phase. For example if we put the two waves shown in
Fig. M together the amplitudes simply add together to make a larger wave.

This is called constructive interference of waves.

However if we add the two waves of Fig. N together something different
happens. The particles of the two waves are always moving in opposite
directions. Therefore their motions will tend to cancel each other out. If the
waves have the same original amplitude the two waves will completely
disappear. If the amplitudes are different the result will be a wave with an
amplitude very much reduced.



It is interesting to note what happens when two wave pulses approach
each other from opposite directions as shown in Fig. R.

Note that at the midpoint of

their meeting they completely cancel
each other and there is no deflection.

Note also that the meeting of the two
waves does not ultimately affect the

shape of either one. They simply
pass through each other causing
some changes in deflection as they
meet but then move on with the same
shape as before.

Standing Waves

When a wave pulse on a line or

a spring approaches a fixed attachment
point it cannot, of course, continue
moving. It will instead reflect from
the surface but it will be upside down
in comparison to its original shape.
The pulse has undergone a 1806

change of phase as it reflects.

This will produce a very
interesting effect if a continuous
train of waves of the right frequency
are produced in a line whose end is

fixed. A situation will be set up where
the reflected waves are of the same
wavelength as the original waves but
they are moving in the opposite
direction. Right at the point of

reflection the waves will completely
cancel but as

.
the reflected wave

travels along it will soon be in phase
with the incoming wave and they will
reinforce each other. The result will
be a double amplitude. The situation
is illustrated step by step on the
following page.

F

180
“
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The result is called a standing wave because it produces vibrations
that appear to remain stationary with respect to horizontal movement. The
material vibrates as follows:

The oscillations move back and forth between the lines shown. The
points where there is no movement are called nodes.

Standing waves are important because they are responsible for the
sound in organ pipes or for the sound from stretched strings in pianos,
violins, guitars, etc. The vibrations in the strings are standing waves.
Standing waves are also important in understanding the way electrons are

bound to the atom as we shall see later in the Physics 30 course.

Self-Check Exercise #3

1. The amplitudes of two waves are 7 units and 3 units.

(a) What is the maximum amplitude that can result from
constructive interference?

(b) What is the minimum amplitude that can result from
destructive interference?
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2. Draw a diagram showing a standing wave with dhree nodes (not

counting the ends).

Answers to Self-Check Exercise #3 on page 24.

Answers to Self-Check Exercise #2, page 8

1. 0.782 m (about 78 cm) x - j

2. 344 Hz f = x

Wave Fronts and Wave Rays

So far we have been using diagrams like Fig. A, page 1 to picture
waves. However such a diagram has limitations. For example a diagram like

Fig. A cannot show us how waves from a petble dropped in water spread
out in circles across the water surface. There is no way to show the
circular pattern by using Fig. A. Similarly we cannot show how sound waves
spread out in all directions from a source of sound. The problem is that
the diagrams we have used are only in two dimensions (up and down, and
across the page). But real waves are usually in three dimensions.

A way of solving the problem is to use the concept of wave fronts. A
wave front is simply defined as the line joining points in a wave that are
all in phase and whose motions all started at the same time. Usually we
identify the crest or trough of a wave as a wave front. For example, the
pebble dropping in the water would show wave fronts as follows*.
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The diagram shows the situation somewhat as it would be seen from
above. The dotted lines represent wave troughs and the solid lines represent
wave crests. These wave fronts spread outward from the centre in larger and
larger circles. At the centre when the water particles move upward a crest

is formed. When the particles move downward a trough is formed. These
crests and troughs move outward in continuously spreading circles.

Waves may also be formed with parallel fronts and they can be
illustrated as follows:

Fig. W

In this case we have a well-defined beam of waves.

There is yet another concept that is helpful to us in describing the
behavior of waves. It is the concept of wave rays. A wave ray is simply a
line drawn perpendicular to the wave fronts with an arrow showing the
direction of the waves' motion. Most directly it gives us the direction of the
waves' motion.

Wave rays for Fig. V could be drawn as follows.

Fig. X



Physics 30A - 15 - Lesson I

Similarly wave rays could be drawn for Fig. \A/ as follows:

Fig. Y
ooave. -fronts

toavc

Waves as Energy Sources

One of the most common energy carriers are light waves or
electromagnetic waves. We will have occasion to study these in Physics 30.

Another energy carrier is water waves. Water waves washing up
against the shores of oceans tend to break down the rocks into sand and
wear away the land. Energy is being used in this process. The energy in

waves comes mostly from the wind that moves over the surface of the water.
In recent years some thought has been given to harnessing the energy of

water waves. A number of devices have been invented which will change the
up and down wave motion to circular mechanical motion that can turn an
electric generator. These devices include floats that move up and down with
the waves or ships with hollow chambers in which the waves push and pull
air through turbines. There are no doubt several effective ways in which
wave energy will be tapped as a source of energy in the decades ahead.

Lesson Summary

Waves are regular energy-carrying disturbances in a medium.

Waves in which the motion of the medium is at right angles to the
motion of the wave are called transverse. Waves in which the direction of

motion of the medium is parallel to the direction of wave motion are called
longitudinal.

All waves have a number of characteristics such as wavelength (X),

frequency (f), amplitude (A), period (T) and velocity (v).

The wave equation relates some of these characteristics:

v = fa

Period and frequency are related by f s i.
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The crest of a transverse wave is the highest displacement that the

wave achieves above the undisturbed level and the trough is the lowest
displacement.

Transverse waves are often called sine waves because their shape is

similar to the graph of the sine function.

Damping of waves occurs when waves lose energy as they travel along
in the medium. The result is a gradual reduction in amplitude until the
waves disappear.

Longitudinal waves, such as sound waves, consist of compressions and
rarefactions that move outward from the vibrating source.

Wave particles are in phase when the particles are moving in the same
direction and have a similar displacement.

Wave particles are out of phase when the particles are moving in

opposite directions and have opposite displacements.

Phase difference can vary anywhere from 0° to 360° out of phase. It

simply means that one wave is a specified number of degrees behind another
wave (one wavelength being 360°).

Constructive interference occurs when two waves in phase add together
to increase wave amplitude.

Destructive interference occurs when two waves out of phase are added
together to produce a lower amplitude than either.

Waves reflect from surfaces and in doing so change in phase by 180°.

Wave pulses passing through each other will change the amplitude at

the meeting point but will pass on unchanged thereafter.

A standing wave is formed when waves of the same wavelength and
frequency pass each other in opposite directions.

A wave front is a line joining points in a wave that are in the same
phase and whose motion began at the same time. A wave ray is a line
perpendicular to a set of wave fronts and indicates the direction of wave
motion. Fronts and rays are helpful in accounting for the three dimensional
characteristics of waves.

Since waves are carriers of energy it is possible to harness this energy
for practical uses such as generation of electricity.
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1.

What is a wave?

2. (a) In what direction do the particles of a medium vibrate when a
transverse wave passes through the medium?

(b) The following dots represent particles in a medium through which
a transverse wave is passing Attach an arrow to each dot to

illustrate the direction in which each of the particles moves.

3. (a) What is meant by the term amplitude?

(b) Sketch a positive pulse having an amplitude of 4.0 cm, followed by
a negative pulse of an amplitude of 3.0 cm.
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4. (a) What is damping as associated with waves?

Lesson I

(b) Draw a sketch which illustrates damping of a wave.

(c) What happens to the energy of a wave that is severely damped?

5.

What is a longitudinal wave?

6.

What is a compression?
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7. In what ways are longitudinal waves similar to transverse waves?

8. Describe the following characteristics of waves:

(a) phase A way of describing how the motions of two waves are

related to each other. When motions of particles are in the same

direction at the same time and place, waves are in phase.

True or false?

(b) wavelength
'

(c) period

(d) frequency

9« What is the frequency of vibration if the period is 0.4 s?

10o Calculate the period of vibration if the frequency is 60 Hz.
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11. Using a cm ruler find or calculate the following characteristics of the

wave shown. The time taken for one wavelength to form is 0.010 s.

(b) wavelength

(c) amplitude

(d) period

(e) speed

12. As v/ell as two waves being out of phase with each other, it is also
possible for two points on a wave to be out of phase. Label two points,
X and Y, that are 180° out of phase on the wave of #11.

13. In a particular medium, a source produces waves with a frequency of

150 Hz and a wavelength of 2.0 X 10” 2 m. Calculate the speed of the
waves through the medium.
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14. The speed of sound in water is measured at 1.46 X 10 3 m/s. If a sound
wave in water has a frequency of 8.0 X 10

2
Hz, what is the wavelength

of the sound?

15. A wave travels through a medium with a speed of 25 m/s. If the

wavelength is 1.25 m, what is the frequency of the wave?

16 a (a) which feature(s) of a wave are/is determined by the source
(frequency, velocity, or period)?

(b) Which features of a wave are determined by the properties of the
medium through which it travels (frequency, velocity or period)?

(Hint: Make use of the relationship, v = f X)

.

17. On the axes below draw a second wave that is 90° out-of-phase with the
wave shown.
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18. (a) In the space below draw a pattern for a standing wave that has
only one node (not counting the end points).

(b) What is the wavelength of this standing wave?

(c) How many wavelengths would there be in a standing wave with no

nodes between the end points? __________________

19.

What is a wave front?20.

What does a wave ray show?

21.

A point source of vibrations vibrates at 1.5 Hz. The distance between
crests is 4.5 * 10”2 m. Calculate the speed of the wave.



Physics 30A - 23 - Lesson I

22. A source of waves is vibrating at a steady rate of 3 Hz. The waves
formed spread out from the source, pass through oil and then into

water where the waves travel faster than they do in oil. Explain
what happens to each of the following wave characteristics and give
reasons why it happens.

(a) Frequency

(b) Wavelength

(c) Period

Answers to Self-Check Exercise #3

End of Lesson 1
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REFLECTION, REFRACTION, DIFFRACTION AND INTERFERENCE OF WAVES

Reflection

1. Wavefronts and Rays

A wave can be represented by a line showing a pattern in two
dimensions, as illustrated in Fig* A. Such a representation of a wave is

similar to wave motions exhibited by
certain objects. For example, we
could have a rope or cord form such a

shape by rapidly moving one end of

the rope up and down. Fig. A is a
two dimensional representation of a
wave because there are only two
spatial dimensions needed to show the
motion. These spatial dimensions are
represented by the x and y axes.

It often is easiest for us to show wave motion in two dimensions
because "flat" surfaces such as pieces of paper usually are used for

such illustrations. However, as you may be aware, most of the motions
that we see and use occur in three spatial dimensions (which, for

example, may be called the up-down dimension, the left-right dimension,
and the forward-backward dimension). For example, water waves or

ripples produced by an object falling in a pool appear to involve
vertical (up-down) motions as well as motions outward from the source.
This is illustrated by the two drawings in Fig. B. Note that the arrows
show the directions of the wave motion. Because of the disturbance at

point C, waves move outward from
that point, as illustrated in the upper
diagram, (a). In part (b), the wave
motion in the vertical dimension is

shown. Hence, by using two diagrams,
it is possible to represent three
dimensional wave motion.

The circular lines in part (a) of

Fig. B join parts of the wave that
were produced at the same time and
that are in phase with each other.
Such lines represent what are called
wavefronts. The arrows showing the
directions of motion of the wavefronts
are known as rays. Rays are always
perpendicular (at a 90^ angle or a
right angle) to wavefronts. In many
of the diagrams in this lesson we will

represent wave motion using wavefronts and rays. Although part of the
description of the waves will not be included in those diagrams, this

will not mean that it does not exist; it just allows us to study some
important aspects of waves using simpler and relatively uncluttered
diagrams.

askunrt

(b) WWjr£
fa*. /UULrr\ ~

“ 3 .

Fig. A
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Wavefronts may have various shapes, and sometimes they are quite
complex. We will be concerned with wavefronts that have simple shapes.
We have seen one shape in Fig. B: the circular wavefront. Such a

wavefront can result from the activity of a point source. For example,
the up-and-down motion of a relatively small object in a tank of water
can result in waves that can be represented by circular wavefronts.
Similarly, we can approximate the form of light waves from a small

Fig. C
light bulb by using circular lines.

These lines would represent in two
dimensions spherical wavefronts
produced by a point source of light.

See Fig. C. On the line labelled 1 ,

a segment has been isolated and
called R-S. Because the radius of

circle 1 is relatively small, there is

noticeable curvature in segment R-S.
As the radius increases, the segments
corresponding to R-S on the other
wavefront lines show less and less
curvature. When we reach 5 the
segment P-Q shows very little

curvature. At sufficient distance from
source B, the small wavefront segments
such as P-Q could be considered to be
plane wavefronts; that is, they could
be represented by a series of straight
parallel lines, such as those shown in

Fig. D. Plane wavefronts are those
which can be considered to be "flat"

I

*

(they have no curvature in them).
In many situations, plane
wavefronts can be assumed to

exist at positions that are large
distances from point sources.
For example, because most
stars are so far away, we can
consider them to be point
sources, and the light from them
can be considered to be composed
of plane wavefronts. In most of

our discussions of reflection and
refraction, we will be dealing
with plane wavefronts.

Self-Check Exercise #1

Fig. D

1. The directions of motion of wavefronts are shown by

2. The angle between wavefronts and wave rays is always
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3. At large distances from point sources of waves, the curvature of the

wavefronts is almost
.

4. Wavefronts with no curvature are called
wavefronts.

See page 4 for the answers.

2. Normals and Tangents to Surfaces

Reflection of a wave occurs when a wavefront approaches and
strikes a surface and then "bounces" away from or moves away from the

surface. In order for this to occur, there must be some kind of

interaction between the wave and the surface. We will be concerned
with predicting the result of this interaction. Before we can do that,
we will have to become familiar with some terms that will aid us
in describing the motion of a wavefront with respect to a surface.

In part (a) of Fig. E, a flat or plane surface is shown.
Perpendicular (or at a right angle) to that surface is a line labelled
N. That line is called the normal to the surface.

•W

The normal to any plane
surface is always at 90 to

the surface.

Many surfaces are not

plane surfaces. They may
involve some sort of

curvature. Such a surface
is illustrated in part (b) of

Fig. E. The curvature of

the surface is dependent
on the length of the radius
of curvature (the distance
from the centre of curvature
to the surface). The smaller
the radius of curvature, the
larger is the curvature. A
line that is perpendicular to

the radius of curvature line

and just touches the curved
surface at a pont (A) is

known as the tangent to the

surface at A. The line

drawn perpendicular to the

tangent (and labelled N in

Fig. E) is the normal to

the surface at A. Hence, we
can find a normal at a

point on a surface if the

tangent at that point is

known.
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Answers to Self-Check Exercise #1

,

pages 2 and 3.

1 . rays 2. 90° 3. zero 4. plane

3. Law of Reflection

The reflection of a plane wavefront from a plane surface is

illustrated in Fig. F. The approaching or incident wavefronts are
represented by the lines that are perpendicular to the line labelled I.

Line I is a ray which is

Fig. F

The fundamental relationship
for reflection is the following:
with incident ray, reflected ray
and normal all drawn in the
same plane, the angle of incidence
equals the angle of reflection.
Referring to Fig. G, the law of

reflection requires that angle i

be equal to angle r: i = r. This
law is true for plane or curved
surfaces. Note that the angles
are measured from the normal.

4. Reflection from Curved Surfaces

known as the incident ray
for point A on the surface.
When the incident wavefronts
are reflected they move
away from the surface in a
direction indicated by R,

the reflected ray. Note that
the reflected wavefronts are
perpendicular to the
reflected ray. A normal, N,

at point A is shown also.

Two angles are shown
between the two rays and
the normal. Angle i is the
angle of incidence. Angle r

is the angle of reflection.

Usually when reflection is

represented in diagrams, the
lines for the wavefronts are
omitted, and only the
incident and reflected rays
are used to represent them.
Fig. G shows this.

Fig. G

The law of reflection holds for any reflecting surface, but the
results often are not as easily predicted when curved surfaces are
involved as when plane surfaces are involved. The reason for this is

that with a curved surface the direction of the normal (and consequently
the angle of incidence) may not be immediately obvious. In Fig. H two
circular reflecting surfaces are shown. In part (a) a convex surface is
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shown and in part (b) a concave

surface is shown. (To remember which

is which, note that the word concave

includes the word "cave” and that the

reflecting surface curves inward, like

a cave.) For circular reflecting

surfaces, it is not difficult to find

the normal if you know where the

centre of the circle is. The normal to

a circular surface at a particular

point lies along a line passing

through that point and the centre of

the circle. When the normal has been

drawn, the incident ray and reflected

ray can be drawn at the required

angles, using the relationship i = r.

A special but important case of

reflection from a curved surface is

that of reflection from a parabolic

surface. Parabolic surfaces may be

used with such things as telescopic

mirrors or the large "dish

antennas" used in radio astronomy.

The parabolic shape is useful because

it will allow the reflection of plane

wave fronts to a point. Fig. 1

illustrates this. The parallel incident

rays become reflected rays that

converge to a point. This may be

useful because plane wavefronts

from a relatively large area can

be focussed on a smaller area

with little distortion giving more

intense images. Optical and radio

astronomy telescopes use this

principle.

Fig. I
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A circular reflector does not

produce focussing to a point. This is

illustrated in Fig. J. Notice that the

parallel incident rays do not result

in reflected rays that all converge to

one point.

Fig. J

Self-Check Exercise #2

1. The angle between the normal and tangent to a surface at a point

always is „

2. A ray showing the direction of approach of wavefronts to a surface is

known as the ray.

3. A ray showing the direction of motion of wavefronts from a surface after

reflection is known as the _________ ray.

4. The angles of incidence and reflection are always measured between

the incident and reflected rays and the
.

5. The law of reflection is that the angle of incidence always

the angle of reflection.

6. Is the law of reflection true for all curved surfaces?

7. A reflector reflects parallel incident rays to a point.

See page 8 for the answers.

NOW DO EXERCISE A ON PAGES 17 and 18

Refraction

The speed of a wave in a medium depends upon features of the medium.
A wave may move faster in one medium than in another. When a wavefront
moves from one medium to another, the change in speed that occurs results
in a change in direction of the wavefront. This change in direction may be
called refraction. Fig. K illustrates the refraction of a plane wavefront as
it passes from one medium to another. The wavefront is represented by
line W-F. In Medium 1, the speed of the wave is 1.5 cm/s. In Medium 2,
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Fig. L

the speed of the wave is 0.75 cm/s.
The positions of the wavefront are
represented by the successive
positions of line W-F at the times
indicated as t = 0 s, t = 1 s,

t=2 s, t=3 s. Note that for

each 1 s interval, the wavefront
moves 1.5 cm in Medium 1, and
0.75 cm in Medium 2. This results
in a change in direction of the
wavefront as it moves from
Medium 1 to Medium 2. As
indicated before, such a change
in direction of a wavefront is

known as refraction.

Often, to illustrate refraction
more simply in diagrams, the
lines representing the wavefronts
are omitted, and just lines

showing the boundary between the
media, the incident ray (I), the
refracted ray (Q) and the normal
(N) are shown.

As with reflection, we are
not concerned with the details of

how and why refraction occurs at

this point. What is desired is

some way of predicting the
change in direction of a

wavefront as it moves from one
medium to another. In other words,
we want a law of refraction,
hopefully in a relatively simple
and easy to use form. Such a law
exists, and in the following
notes we will show one way in

which it can be derived.

In Fig. L a wavefront in

Medium 1 is represented by a
line labelled a-d. In a period of

time which we shall call t 0 , the

wavefront moves from the position
of line a-d to the position of line

b-c, in Medium 2. In other words,
one end of the wavefront moves
from a to b in a time t 0 ,

and the
other end moves from d to c in the
same time t 0 . Since the speeds in

the two media are v
x
and v2 for

Medium 1 and Medium 2

respectively, we can express the

distances ab and cd as shown on
the following page.
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ab = v 1 1 o

cd = v 2 t„

For example, if vi = 1.5 cm/s, v 2 = 0.75 cm/s and t e =1.0 s, then

ab = 1.5 cm/s * 1.0 s = 1.5 cm

cd = 0.75 cm/s x 1.0 s = 0.75 cm

Answers to Self-Check Exercise #2, page 6

1. 90° 2. incident 3. reflected 4. normal 5. equals

6. yes

Now we have to use some trigonometry to obtain the law of refraction

Part of Fig. L has been redrawn in Fig. Mo Two triangles with a common
side are shown: triangle abd and
triangle bcde They are both right
angle triangles, and both have the

same hypotenuse: line bd. The sines
of the angles i and R can be found
in terms of the sides of the
triangles by using the definition of

the sine of an angle (the sine of an
angle equals the ratio of the length
of the side opposite the angle to the
length of the hypotenuse of the

triangle). If you are not clear about
the meaning of the sine of an angle,
you should see Lesson A.

* _ side opposite angle i _ ab
sin i - hypotenuse ~ bd

R _ side opposite angle R _ cd
Sin “ hypotenuse ~ bd

From before, we know that ab = Vi t 0 and cd = v 2 1 0

Forming the ratio of sin i to sin R we have

ab

= bd _ ab V j 1

0

cd cd V 2 to

bd

sin i Vl

sin R
”

v 2

v i

v 2
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This is one form of the law of refraction. If we know v
x , v

2
and i,

the value of the angle of refraction, R, can be found. Another form of the
law involves what is known as the index of refraction. If the index of

refraction for a wave moving from medium 1 to medium 2 is symbolized as
n , then the law of refraction can be stated as

12

sin i V,

sin R v
2

= n “

For example, if v
2
=1.5 cm/s, and v 2 = 0.75 cm/s, then n w would be

found to be

v
l _ 1.5 cm/s 9 n

v 2 07T5 cmTi

Notice that this is the index of refraction for the wave going from
medium 1 to medium 2. If the wave were moving from medium 2 to medium 1,

then the index of refraction n 21 would be

1

n 1£

Hence, the index of refraction for a wave moving from medium 1 to

medium 2 is the inverse of the index for moving from medium 2 to medium 1.

To aid in solving problems involving refraction, it is useful to have a
table giving values for the sines of angles. Such a table is shown below.
Note that the values appear for angles from 0° to 90° in 5° intervals. More
detailed listings of the values of sines of angles can be found in other
trignometric tables. See page 19 of Lesson A.

Table 1

Angle
(°)

Sine Angle
(°)

Sine

0 0 50 0.766 0

5 0.087 2 55 0.819 2

10 0.173 6 60 0.866 0
|

15 0.258 8 65 0.906 3

20 0.342 0 70 0.939 7

25 0.422 6 75 0.965 9

30 0.500 0 80 0.984 8

35 0.573 6 85 0.996 2

40 0.642 8 90 1.000 0

45 0.707 1
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1. The change in direction of a wavefront as it moves from one medium to

another is known as
.

2. The change in direction of a wavefront as it moves from one medium to

another occurs because the wavefront has different
in different media.

3. If the angle of incidence is 0°, then the angle of refraction must be

4.

In terms of the wave speeds in two media, the law of refraction may be

sin i
given as —-—~ = .s sm R

5. In terms of the index of refraction in going from medium 1 to medium 2,

the index of fraction may be given as * = .

6. The index of refraction in going from medium 2 to medium 1 is n2i .

Give n m in terms of n 12 .

See page 12 for the answers.

The following examples illustrate the use of the law of refraction.

Example 1

A wave has a speed of 8.0 m/s in one medium and moves into another
medium in which its speed is 24.0 m/s. If the angle of incidence is 15°,

what will be the angle of refraction? (Use the values in Table 1, and
estimate the angle of refraction to the nearest 5°.)

Given: Vi = 8.0 m/s
v 2 = 24.0 m/s
i = 15°

To find: R

sin i

sin R
v_L
v 2

— (sin i) =
v i

Solution

:

sin R 2
4 (sin 15°) = 3.0 (0.2588)
o.U m/s

= 0.776
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From Table 1, the closest value to 0.776 would be the sine of 50°

( 0 . 7660 ).

R = 50°

Example 2

When a wave moves from medium 1 to medium 2 the index of refraction
is 2.5

(a) What is the index of refraction in moving from medium 2 to

medium 1?

(b) If the speed of the wave in medium 1 is 10.0 m/s, what is its

speed in medium 2?

Given: n 12 = 2.5
V! = 10.0 m/s

To find: ( a ' «

Solution: (a) n 2i = -----

1= 23

n ZJ = 0„40

10.0 m/s
2.5

- 4.0 m/s

OR

v 2 = v x n 2

x

- 10.0 m/s (0.40)

v 2 = 4.0 m/s

DO EXERCISE B ON PAGES 19 and 20 NOW
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Answers to Self-Check Exercise #3 , page 10.

1. refraction 2. speeds 3. 0® 4. v 2

5. n lt 6. n 12

Diffraction

So far in this lesson we have been concerned with the change in

direction of motion of wavefronts due to reflection and refraction. Wavefronts
also can move around obstacles and change direction because of a third
phenomenon known as diffraction. Diffraction may be described as the
spreading of waves around a corner. Examples of diffraction of sound might
be hearing the sound of a radio or TV set in another room through a
doorway, or hearing the roar of a crowd near an open-air stadium. The
extent to which spreading of waves occurs depends upon the wavelength of

the waves and the size of the opening through which the waves pass. When
the opening is much greater than the wavelength of the wave, diffraction
effects are small. When the opening is near in size or smaller than the
wavelength, diffraction effects are noticeable. Diffraction of sound through
doorways or windows usually is significant because such openings have
dimensions which are close in size to the wavelengths of sound waves.

Diffraction helps to explain why it is not possible to produce a very
narrow wave "ray" by passing wavefronts through very narrow openings. As
shown in Fig. N, as the opening gets smaller, the wavefronts bend more and

more. Eventually, there is almost no
evidence of plane wavefronts after
they have passed through the
opening. Hence, by making the
opening smaller, we cannot produce a
narrow beam or ray indefinitely.

This feature of wave behaviour
can be understood in terms of

Huygens' principle. Huygens'
principle states that any point on a
wavefront can act as a point source
for wavefronts produced in the
direction of motion of the wave.

Applying Huygens' principle to

the situation of a wavefront meeting a
narrow opening, we can see that the
part of the wavefront that reaches
the opening will act as a generator of

wavefronts. If the opening is small in

comparison to the wavelength, the
part of the wavefront at the opening
will act almost as a point source,
producing almost spherical or circular
wavefronts, as illustrated in the
lower part of Fig. N.

Fig. N
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1. The spreading of waves around a corner is known as

2. If an opening is small compared to the wavelength, then diffraction

effects will be .

3. The idea that any' point on a wavefront can act as a point source of

waves is known as
.

See page 16 for the answers.

Answers to Self-Check Exercise #5

1. (a) 12.5 cm (b) 3.5 cm 2. a node 3. an antinode

Superposition and Interference

Superposition of waves refers to the idea that the effects of combining
two waves of the same kind can be found by adding the effects of each wave
individually. For example, suppose that we have a cork floating in water and
a water wave causes it to cork up and down with an amplitude of 0.5 cm.
If we were then able to apply another wave in phase with the first one with
an amplitude of 1.0 cm, the cork then would have a maximum displacement
of 0.5 cm + 1.0 cm = 1.5 cm. The amplitudes of the two waves could be
added to obtain the net amplitude of the cork. Fig. 0 gives a simplified
illustration of this idea. In the situation of Fig. 0, the two pulses are

Fig. 0 <«— b

In this case we could say that
the pulses were completely out of

phase. When two waves of different
frequencies and different amplitudes
are combined, the principle of

superposition can be used to find the
resultant wave. This is illustrated in

Fig. Q.

"in phase" when they reach the cork
because their peaks reach it at the

same time.

If instead of the two peaks
reaching the cork at the same time we
have a peak and the lowest point of a

trough meeting, then the resulting
maximum displacement of the cork will

be the difference between the two
amplitudes. See Fig. P.

b
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When two waves combine at a point to produce a resultant wave having
an amplitude equal to the sum the amplitudes of the two waves at that
point, then we can say that constructive interference has occurred. If two
waves combine at a point to produce a resultant wave having an amplitude
equal to the difference of the amplitudes of the two waves (and in the same
direction as the wave of greater amplitude), then we can say that
destructive interference has occurred . It is possible to have total destructive
interference at some point. For example, if two waves combining at a point
are completely out of phase and have equal amplitudes, their resultant at

that point will be zero. See Fig. R.

Fig. R
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When we apply the ideas of superposition, and constructive and
destructive interference to wavefronts produced by vibrating sources, it is

important to note that constructive and destructive interference may occur at

various points, depending upon how the wavefronts interact. For example,
in Fig. S the wavefronts produced by two vibrating sources are illustrated.

The solid lines represent the

Fig. S positions of the peaks, and the
dashed lines represent the positions
of troughs. Each point where two
solid lines meet, or where two
dashed lines meet is a point at which
maximum constructive interference
occurs. Each point at which a dashed
line meets a solid line is a point at

which total destructive interference
occurs. Points at which total

destructive interference occur are
sometimes called nodes. Some nodes in

Fig. S have been labelled with N's. A
node may bee defined as a point having
a zero displacement continuously.

A point going up and down with

maximum amplitude is called an
antinode. Antinode positions correspond
to points in Fig. S at which two
solid lines meet or two dashed lines

meet. Some of these points have
been labelled with A's in Fig. S.

When wavefronts from two
vibrating sources interfere, the
resulting pattern is called an
interference pattern. Interference
patterns may be similar to the pattern
shown in Fig. S, or they may have
different forms. They are very useful
and important in the study of physics.

For example, suppose we shine a beam of light on two slits close
together (corresponding to the two points called "source” in Fig. S). An
interference pattern from the light waves will form on the other side of the
slits. Now place a plane surface in the interference pattern to act as a
screen. It is represented by the line BC shown in Fig. S. The point D is

very close to an antinode - a point of maximum constructive interference. We
see a bright area on the screen. At points E and F near a node where
maximum destructive interference occurs dark areas are formed. If we
extended the screen and included more waves, the screen would show a
series of light and dark bands gradually fading out towards its ends. If we
looked at the screen from a view point near the slits we would see an
interference pattern as follows:
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This pattern can be used to get information about the light waves. If

we know the distance between the slits and the distance of the screen from
the slits we can, for example, calculate the wavelength of the light waves
that are used to form the pattern.

Self-Check Exercise #5

1. Two waves having amplitudes of 4«5 cm and 8.0 cm are combined. What
is the amplitude of the resultant for (a) total constructive interference
and (b) total destructive interference?

(a)

(b)

2. A point at which total destructive interference occurs is called

3.

A point at which there is a maximum value of displacement continuously

is called
.

See page 13 for the answers.

Answers to Self-Check Exercise #4

1. diffraction 2. great 3. Huygens' Principle

DO EXERCISE C ON PAGES 21 and 22 NOW.
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Exercise A - Reflection

1. Draw wave rays in the following

(a) Plane wavefronts moving
to the right.

diagrams illustrating wavefronts.

(b) Circular wavefronts moving
outward from point S.

(c) Plane wavefronts moving toward surface S-S.

S
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2. A wavefront strikes a plane surface and is reflected from it. The angle
between the incident ray and the surface is 18°.

(a) What is the angle of incidence?

(b) What is the angle of reflection?

(c) Draw a diagram for the situation described above showing the

reflection, including incident and reflected rays and the normal,
but omitting lines representing wavefronts. The line representing
the surface has been drawn for you.

3. Draw reflected rays for each of the incident rays (represented by I)

shown in the following diagrams. Label the reflected rays with R. For
the curved surfaces, draw the tangent and normal lines also, and label
them with T and N respectively.

(a) (b)

(c) (d)

X
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Exercise B - Refraction1.

A wave moves from one medium in which its speed is 30 cm/s to another
in which the wave speed is unknown.

(a) If the index of refraction in going from the first to the second
medium is 2.5, find the wave speed in the second medium.

(b) Calculate the index of refraction in moving from the second to the
first medium.

2.

The angle of incidence of a wavefront on a boundary between two media
is 65°. If n l2 = 2.91, find the angle of refraction.

3.

The index of refraction for light moving from air to water is 1.33°

(a) If the angle of incidence of light on a water surface is 70°, what
will be the angle of refraction?
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(b) If the speed of light in air is 3.0 x 10 8 m/s, what is the speed of

light in water?

(c) Draw a diagram showing the incident ray, refracted ray and normal
for the situation described in 3(a).
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Exercise C - Diffraction and Interference1.

Two waves are illustrated below. Draw a diagram (on the same set of

axes) showing their resultant by superposition.

2.

Diffraction effects are easily noticeable with sound because the

wavelengths involved are close in size to many of the openings involved

in our every day experiences. Why is diffraction of light waves
(wavelength range: about 4.0 * 10

~ 7 m to 7.0 x 10
~ 7 m) not so easily

noticeable? Why can we not "see around corners" as easily as we can

"hear around corners"?

3

.

Two point sources of water waves produce circular wavefronts which
interfere. Describe the motion of a small cork placed at (a) a node and
(b) an antinode.

t

(a) node
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(b) antinode -

End of Lesson J
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